Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KSYe_otvety_33.doc
Скачиваний:
14
Добавлен:
04.12.2018
Размер:
152.06 Кб
Скачать

10. Мировоззренч. Револ-я эпохи Ренессанса.

Мировоззренческая рев-я, свершившаяся в эпоху Ренессанса, состояла в изменении системы человек — мир человека. Эта система распалась на три относительно самостоятельных отношения: отношение Человека к Природе, к Богу и к самому себе. В эпоху средневековья определяющим отношением к миру было отношение человека к Богу как высшей ценности. Отношение человека к природе, которая рассматривалась как символ Бога, и к самому себе как смиренному рабу божьему были производными от этого основного отношения. На основе индивидуализации личности, формирования новых ценностей и установок в эпоху Ренессанса происходит мировоззренч. переориентация субъекта. На первый план постепенно выдвигается отношение человека к природе, а отношения же человека к Богу и к самому себе выступают как производные. В человеке на первый план выдвигается то, что есть в нем божественного: один человек сам способен превращаться для другого в некоторое божество. В культуре Возрождения главной ценностью становится бескорыстное объективное познанш мира. На основе этой важнейшей мировоззренческой ценности складываются непосредств. предпосылки возникновения классич. естествознания.

Коперниканская революция.

Величайшим мыслителем, которому суждено было начать великую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николаи Коперник. Он искал простоту и гармонию в природе, ключ к объяснению единой сущности многих, кажущихся различными явлений. Результатом этих поисков и стала гелиоцентрическая система мира. В центре мира К. поместил Солнце, вокруг которого движутся планеты, и среди них впервые зачисленная в ранг “подвижных звезд” Земля со спутником Луной. На огромном расстоянии от планетной системы находится сфера звезд. Его вывод о чудовищной удаленности этой сферы диктовался гелиоцентрическим принципом; только так мог К. согласовать его с видимым отсутствием у звезд смещений за счет движения самого наблюдателя вместе с Землей. Возможность перехода к гелиоцентризму(подвиж-ти Земли, обращ. вокруг реальн. тела-неподвижного Солнца, располож. в центре мира) К. совершенно справедливо усмотрел в представлении об относительном характере движения.

11.Развитие естествознания в 17в

Можно сказать, что XVII в. открыл новый период в развитии естествознания. Развитие машинного производства, горного дела, судостроения, гидротехническое строительство, совершенствование военной техники, включая фортификационные сооружения, создание точных часов, хронометров и т.п. порождали инженерно-технические проблемы, решение которых требовало знания законов природных явлений, прежде всего механических, связанных с законами движения. Решение этих проблем, а также запросы астрономии, навигации, картографии, баллистики, гидравлики требовали совершенствования математических методов.

Внутренняя логика развития коперниканской революции предопределила ее перерастание в революцию в физике и завершилась величайшим событием в истории науки — созданием первой фундаментальной естественно-научной теории — классической механики. Это стало возможным благодаря внедрению метода эксперимента в естественно-научное познание, установлению теснейшей связи естественно-научных и математических исследований — возникновению математического естествознания. Математика становится важнейшим универсальным средством отыскания, формулирования и объяснения законов природы.

При этом и сама математика претерпевает значительные изменения: она становится математикой переменных величин. От изучения чисел и их отношений, постоянных величин, геометрических фигур, свойственного математике XV—XVI вв., она переходит к изучению движений и преобразований, переменных величин и функциональных зависимостей. На первый план выдвигается понятие функции. В трудах Р. Декарта закладываются основания аналитической геометрии, позволяющей переводить задачи геометрии на язык алгебры, решать их аналитическими методами, и наоборот, геометрически иллюстрировать алгебраические закономерности, например графически изображать функциональные зависимости, и т.п.

В свою очередь изучение функциональных зависимостей подводит к основным понятиям математического анализа (идеи бесконечности, предела, производной, дифференциала, интеграла и др.). И. Ньютон и Г.В. Лейбниц разрабатывают дифференциальное и интегральное исчисления..

В XVII в. зарождается и проективная геометрия – раздел геометрии, изучающий те свойства фигур, которые не изменяются при их проективных преобразованиях. (Известно, что многие важнейшие свойства геометрических фигур при их проектировании изменяются – параллельность и перпендикулярность прямых, равенство отрезков и углов и др.)

Первые работы по теории вероятностей (раздел математики, изучающий закономерности, которые возникают при взаимодействии большого количества случайных факторов) также появились в XVII в. (П. Ферма, Б. Паскаль и X. Гюйгенс) для решения задач, порожденных запросами страхового дела, статистикой народонаселения, теорией методов обработки наблюдений, а также обобщением закономерностей азартных игр (в кости, карты). Научная истина является результатом коллективных усилий многих ученых, а нередко и целых поколений исследователей. Развитие науки неизбежно ведет к ее институционализации – становлению оптимальных форм общественной организации научной деятельности, объединения коллективных усилий, взаимодействия ученых.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]