- •62. Тепловые машины. Кпд тепловой машины. 63 Цикл Карно.
- •67. Средняя длина свободного пробега молекулы газа. Среднее число соударений. Эффективный диаметр молекул.
- •68. 69. 70. Явление переноса.
- •61. Энтропия. Расчет изменения энтропии при различных изопроцессах.
- •64. Третье начало термодинамики. Теорема Нернста.
- •65. Распределение молекул по скоростям.
- •51. Внутренняя энергия идеального газа
- •56. Первое начала термодинамики
- •57 Теплоемкость идеального газа
- •60. Второе начало термодинамики.
- •37. Скорость и ускорение гармонических колебаний.
- •38. Сила и энергия гармонических колебаний.
- •40. Сложение гармонических колебаний одного направления.
- •41. Сложение взаимно – перпендикулярных колебаний.
- •43. Добротность, декремент затухания
- •44. Основы молекулярно-кинетической теории.
- •45. Термодинамические макропараметры. Идеальный газ.
- •46. Уравнение состояния идеального газа.
- •47. Опытные газовые законы.
- •48. Температура. Кинетическая энергия поступательного движения молекул идеального газа.
- •59.Политропический процесс.
- •12. Основное уравнения вращательного движения твердого тела.
- •13. Момент импульса. Момент силы
- •15.Момент инерции материальной точки.
- •16.Момент инерции тела. Теорема Штейнера.
- •19.Момент инерции тонкого диска.
- •21.Поле. Силовое поле. Работа и кинетическая энергия
- •11.Реактивное движение. Формула Циолковского.
- •23 Кинетическая энергия
- •Кинетическая энергия
- •24.Потенциальная энергия
- •66.Барометрическая формула
- •22. Работа и энергия.
- •20. Момент инерции шара.
- •18. Моменты инерции тонкого диска относительно его главных центральных осей.
- •17. Определение момента инерции тонкого стержня, относительно оси, проходящей через его середину.
- •1.Основные кинематические понятия. Материальная точка. Система отсчета, система координат.
- •2.Кинематическое уравнение движения. Уравнение траектории. Перемещение, скорость, ускорение мат. Точки.
- •3.Криволинейное движение, нормальное и тангенсальное ускорение.
- •4. Кинематика вращательного движения.
- •5.Равномерное движение по окружности.
- •6. Связь линейных и угловых параметров.
- •7. Законы Ньютона
- •9. Преобразования Галлилея
- •10.Импульс. Закон сохранения импульса.
15.Момент инерции материальной точки.
Величина
является моментом инерции тела относительно оси вращения.
Из этого выражения следует, что момент инерции вычисляется путем суммирования по всем частицам тела. В случае непрерывного распределения массы тела по его объему естественно перейти от суммирования к интегрированию, вводя плотность тела. Если тело однородно, то плотность определяется отношением массы к объему тела:
.
Для тела с неравномерно распределенной массой плотность тела в некоторой точке определяется производной
.
Момент инерции представим в виде:
,
где V — микроскопический объем, занимаемый точечной массой.
Поскольку твердое тело состоит из большого числа частиц, практически непрерывно заполняющих весь занимаемый телом объем, в выражении (1.94) микроскопический объем можно считать бесконечно малым, в то же время полагая, что точечная масса «размазана» по этому объему. Фактически мы производим сейчас переход от модели точечного распределения масс к модели сплошной среды, какой в действительности и является твердое тело благодаря большой его плотности. Произведенный переход позволяет в формуле (2.94) заменить суммирование по отдельным частицам интегрированием по всему объему тела:
.
16.Момент инерции тела. Теорема Штейнера.
См. билеты номер 12 и 15.
В общем случае вращения тела произвольной формы вокруг произвольной оси, вычисление момента инерции может быть произведено с помощью теоремы Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции J0 относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тела на квадрат расстояния между осями:
J=J0+ma2.
Например, момент инерции диска относительно оси О' в соответствии с теоремой Штейнера:
19.Момент инерции тонкого диска.
.
Рис. Вычисление момента инерции однородного диска
Вычислим момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр (рис.).
Поскольку диск однороден, плотность можно вынести из-под знака интеграла. Элемент объема диска dV = 2πr·b·dr, где b— толщина диска. Таким образом,
,
где R — радиус диска. Введя массу диска, равную произведению плотности на объем диска π·R2 b, получим:
.
21.Поле. Силовое поле. Работа и кинетическая энергия
Рассмотрим тело или систему тел в отсутствие внешних сил. Система тел, на которую не действуют внешние силы (или векторная сумма этих сил равна нулю), является замкнутой. В этом случае F=0.
В отсутствие внешних сил сохраняется еще одна скалярная величина. Если умножить уравнение одновременно слева и справа на вектор скорости, в левой части окажется производная от полного дифференциала, и уравнение примет вид
.
Пусть F = 0. Тогда постоянной во время движения является величина
Она называется кинетической энергией частицы. При отсутствии внешних сил, т. е. в замкнутой системе, сохраняется кинетическая энергия как в случае одного тела, так и для системы тел. Когда на частицу действует внешняя сила F, кинетическая энергия не остается постоянной. В этом случае приращение кинетической энергии за время dt равно скалярному произведению . Величина dA = — это работа, совершаемая силой F на пути dr .
Проинтегрируем соотношениевдоль некоторой траектории от точки 1 до точки 2:
Левая часть представляет собой приращение кинетической энергии на пути между точками 1 и 2, а величина есть работа силы на пути 1—2.
Таким образом, работа сил, действующих на частицу, расходуется на изменение ее кинетической энергии:
Соответственно, изменение кинетической энергии частицы служит мерой работы, произведенной над частицей.
Если частица в каждой точке пространства подвержена действию других тел, то говорят, что эта частица находится в поле сил. В случае силового поля действие силы распределено по всему пространству. Рассмотрим такое поле сил, действие которого на частицу зависит только от положения частицы в пространстве. Такое поле можно описать с помощью некоторой скалярной функции φ(r), зависящей, а соответствии со сказанным, только от координат. Это случай специального, но часто встречаемого в природе потенциального поля, а функция φ(r), характеризующая поле, является потенциалом поля. Сила связана с потенциалом в каждой точке соотношением
,
где постоянная определяется свойствами частицы, взаимодействующей с полем сил.
Подставим соотношение,в и опять проинтегрируем вдоль траектории от точки 1 до точки 2. Получим : T2 - T1 +const(φ2 - φ1) = О,
т.е. величина T2 +const·φ2 = T1 +const·φ1
остается постоянной при движении вдоль траектории. Таким образом, для частицы в потенциальном поле внешней силы сохраняется, т. е. является интегралом движения, величина E = T+const·φ(r).
Величина U = const·φ(r) называется потенциальной энергией частицы в поле φ(r), а выражение представляет собой полную механическую энергию частицы E = T + U.