
- •62. Тепловые машины. Кпд тепловой машины. 63 Цикл Карно.
- •67. Средняя длина свободного пробега молекулы газа. Среднее число соударений. Эффективный диаметр молекул.
- •68. 69. 70. Явление переноса.
- •61. Энтропия. Расчет изменения энтропии при различных изопроцессах.
- •64. Третье начало термодинамики. Теорема Нернста.
- •65. Распределение молекул по скоростям.
- •51. Внутренняя энергия идеального газа
- •56. Первое начала термодинамики
- •57 Теплоемкость идеального газа
- •60. Второе начало термодинамики.
- •37. Скорость и ускорение гармонических колебаний.
- •38. Сила и энергия гармонических колебаний.
- •40. Сложение гармонических колебаний одного направления.
- •41. Сложение взаимно – перпендикулярных колебаний.
- •43. Добротность, декремент затухания
- •44. Основы молекулярно-кинетической теории.
- •45. Термодинамические макропараметры. Идеальный газ.
- •46. Уравнение состояния идеального газа.
- •47. Опытные газовые законы.
- •48. Температура. Кинетическая энергия поступательного движения молекул идеального газа.
- •59.Политропический процесс.
- •12. Основное уравнения вращательного движения твердого тела.
- •13. Момент импульса. Момент силы
- •15.Момент инерции материальной точки.
- •16.Момент инерции тела. Теорема Штейнера.
- •19.Момент инерции тонкого диска.
- •21.Поле. Силовое поле. Работа и кинетическая энергия
- •11.Реактивное движение. Формула Циолковского.
- •23 Кинетическая энергия
- •Кинетическая энергия
- •24.Потенциальная энергия
- •66.Барометрическая формула
- •22. Работа и энергия.
- •20. Момент инерции шара.
- •18. Моменты инерции тонкого диска относительно его главных центральных осей.
- •17. Определение момента инерции тонкого стержня, относительно оси, проходящей через его середину.
- •1.Основные кинематические понятия. Материальная точка. Система отсчета, система координат.
- •2.Кинематическое уравнение движения. Уравнение траектории. Перемещение, скорость, ускорение мат. Точки.
- •3.Криволинейное движение, нормальное и тангенсальное ускорение.
- •4. Кинематика вращательного движения.
- •5.Равномерное движение по окружности.
- •6. Связь линейных и угловых параметров.
- •7. Законы Ньютона
- •9. Преобразования Галлилея
- •10.Импульс. Закон сохранения импульса.
48. Температура. Кинетическая энергия поступательного движения молекул идеального газа.
Макроскопическая характеристика теплового движения — температура. Температура есть мера содержащегося в теле тепла. Она же определяет направление перехода тепла — от более нагретого тела к менее нагретому. Если температуры тел одинаковы, то передачи тепла от одного тела к другому не происходит.
Рассматривая теплоту как форму энергии, необходимо связать ее с кинетической энергией частиц. Чем больше нагрето тело, тем больше и кинетическая энергия его частиц. Таким образом, кинетическую энергию движения частиц так же, как и температуру, можно рассматривать как меру теплового движения. Естественно предположить, что обе эти величины связаны между собой. На существование такой связи указывает, например, аналогия между переходом теплоты от одного тела к другому и передачей кинетической энергии при столкновении упругих тел.
Следует помнить, что температура — это макроскопическая характеристика тела, т. е. термодинамическая переменная, в то время как кинетическая энергия характеризует отдельную частицу. Поэтому температура должна быть связана со средней кинетической энергией, приходящейся на одну частицу в системе большого числа частиц. Среднюю кинетическую энергию частиц в системе, состоящей из N частиц, обозначим через <Ek> и определим ее следующим образом:
. (2.1)
Если все частицы одинаковы, массу частицы можно вынести из-под знака суммы:
. (2.2)
Будем считать что температура T ~ 2<Ek>/3 = m<v2>/3.
Для того чтобы выразить температуру в градусах, нужно ввести коэффициент пропорциональности, показывающий, сколько джоулей соответствует одному градусу. Он называется постоянной Больцмана и, как показывают измерения, равен 1,38·10‑23 Дж/К, где К означает градус Кельвина — единицу измерения температуры, используемую в физической шкале. Тогда соотношение между температурой в градусах и энергией в джоулях запишется в виде:
или
.
(2.3)
Принятая в физике шкала температур называется абсолютной шкалой, или шкалой Кельвина. В этой шкале температура замерзания воды, то есть 0°С, соответствует 273,15 градусов Кельвина, что обозначается 273,15 К. Согласно выражению (2.3) при T = 0 всякое тепловое движение частиц в веществе прекращается. Эта температура имеет название абсолютного нуля.
Подчеркнем статистический характер определения температуры, поскольку она связана со средней энергией частиц. Поэтому можно говорить лишь о температуре системы достаточно большого числа частиц — макроскопической системы, и нельзя говорить о температуре одной или, допустим, десяти частиц. В процессе измерения температуры происходит обмен теплом между системой частиц — объектом измерения и измерительным прибором — термометром. Понятие температуры тела приобретает смысл в том случае, если обмен теплом между телом и прибором в процессе измерения температуры мало изменяет состояние тела.
59.Политропический процесс.
Политропическими называют процессы, при которых теплоемкость тела остается постоянной. Таким образом, условие, которое выполняется в ходе политропического процесса заключается в том, что С=const.
Найдем уравнение политропы для идеального газа. Напишем уравнение первого начала термодинамики для одного моля газа. dQ=CdT
CdT=CvdT+pdV
В это уравнение входят все три параметра p, V, T. Один из них можно исключить с помощью уравнения состояния, и получим :
pdV+Vdp=RdT
Исключая из этих двух уравнений dT и производя приведение получим:
(C - Cv - R)pdV + (C - Cv)Vdp=0
Заменим Cv + R на Сp и делим на pV
(С
– Сp)
Так как С, Сp, Cv=const , интегрируем
(С
– Сp)lnV
Делим на C - Cv
pVn=const
где
n=
- показатель политропы при политропическом
процессе.
При
n=
это выражение равно нулю.
Процесс |
N |
Изобара |
0 |
Изотерма |
1 |
Адиабата |
|
Изохора |
|