
- •Микропроцессорные устройства
- •4.2.1.3 Специальный режим использования порта р0:
- •10 Примеры схем включения омэвм………………………………………...……..……………..73
- •Введение
- •1 Общая характеристика омэвм к1816ве751
- •2 Условное графическое обозначение омэвм к1816ве751 и назначение ее отдельных выводов
- •3 Структура омэвм к1816ве751 и ее описание
- •3.1 Блок управления и синхронизации микроЭвм
- •3.2 Блок арифметико-логического устройства (алу)
- •3.3 Резидентная память данных
- •3.4 Резидентная память программ
- •3.5 Блок прерываний
- •3.6 Блок таймеров – счетчиков
- •3.7 Блок последовательного порта (интерфейса)
- •3.8 Параллельные порты ввода-вывода
- •3.9 Схема десятичной коррекции аккумулятора (сдка)
- •3.10 Внутренний тактовый генератор (osc)
- •3.11 Резидентная шина данных
- •3.12 Регистры
- •4 Особенности функционирования и применение омэвм в различных режимах
- •4.1 Использование таймеров-счётчиков
- •4.2 Использование параллельных портов ввода-вывода
- •4.2.1 Особенности работы порта р0
- •4.2.1.1 Особенности работы р0 с вп (впп или впд)
- •4.2.1.2 Особенности работы р0 в качестве портов ввода/вывода
- •4.2.1.2.1 Вывод данных через р0
- •4.2.1.2.2 Ввод данных через р0
- •4.2.1.3 Специальный режим использования порта р0:
- •4.2.2 Особенности работы порта р1
- •4.2.3 Особенности работы порта р2
- •4.2.4.1.2 Выполнение портом р3 альтернативных функций входа
- •4.2.4.2 Работа р3 в качестве порта вывода
- •4.2.4.3 Работа р3 в качестве порта ввода
- •4.3 Применение последовательного порта
- •4.3.1 Работа последовательного порта в режиме 0
- •4.3.1.1 Передача в режиме 0
- •4.3.1.2 Приём в режиме 0
- •4.3.2 Работа последовательного порта в режиме 1
- •4.3.2.1 Передача в режиме 1
- •4.3.2.2 Приём в режиме 1
- •4.3.3 Работа последовательного порта в режимах 2 и 3
- •4.3.4 Скорость передачи-приёма данных через последовательный порт
- •4.3.5 Пример программирования последовательного порта омэвм
- •4.3.6 Особенности межконтроллерного обмена информацией в локальных управляющих сетях
- •4.4 Особенности структуры прерываний
- •4.5 Организация пошагового режима работы
- •4.6 Организация памяти
- •4.6.1 Особый режим работы памяти омэвм
- •4.7 Расширение резидентной (внутренней) системы ввода-вывода (рсвв/выв)
- •5 Система команд
- •5.1 Способы адресации операндов
- •5.2 Команды передачи данных
- •5.3 Арифметические команды
- •5.4 Логические команды
- •5.5 Операции с битами
- •5.6 Команды передачи управления
- •6 Программирование и проверка омэвм км1816ве751
- •7 Программирование бита защиты памяти
- •8 Режим холостого хода и пониженного энергопотребления
- •8.1 Режим холостого хода
- •8.2 Режим микропотребления
- •8.3 Режим пониженного потребления для омэвм серии 1816 (n-моп)
- •9 Начальная инициализация омэвм
- •10 Примеры схем включения омэвм
- •Список литературы
5.6 Команды передачи управления
К данной группе команд (таблица 25) относятся команды, обеспечивающие условное и безусловное ветвление, вызов подпрограмм и возврат из них, а также команда пустой операции NOP. В большинстве команд используется прямая адресация, т.е. адрес перехода целиком (или его часть) содержится в самой команде передачи управления. Можно выделить три разновидности команд ветвления по разрядности указываемого адреса перехода.
Длинный переход. Переход по всему адресному пространству ПП. В команде содержится полный 16-битный адрес перехода (ad 16). Трехбайтные команды длинного перехода содержат в мнемокоде букву L (Long). Всего существует две такие команды: LJMP – длинный переход и LCALL – длинный вызов подпрограммы. На практике редко возникает необходимость перехода в пределах всего адресного пространства и чаще используются укороченные команды перехода, занимающее меньше места в памяти.
Абсолютный переход. Переход в пределах одной страницы памяти программ размером 2048 байт. Такие команды содержат только 11 младших бит адреса перехода (ad 11). Команды абсолютного перехода имеют формат 2 байта. Начальная буква мнемокода – A (Absolute). При выполнении команды в вычисленном адресе следующей по порядку команды ((РС) = (РС)+2) 11 младших бит заменяются на ad 11 из тела команды абсолютного перехода.
Относительный переход. Короткий относительный переход позволяет передать управление в пределах -128...+127 байт относительно адреса следующей команды (команды, следующей по порядку за командой относительного перехода). Существует одна команда безусловного короткого относительного перехода SJMP (Short). Все команды условного перехода используют данный метод адресации. Относительный адрес перехода (rel) содержится во втором байте команды.
Косвенный переход. Команда JMP @A+DPTR позволяет передавать управление по косвенному адресу. Эта команда удобна тем, что предоставляет возможность организации перехода по адресу, вычисляемому самой программой и неизвестному при написании исходного текста программы.
Условные переходы. Развитая система условных переходов предоставляет возможность осуществлять ветвление по следующим условиям: аккумулятор содержит нуль (JZ); содержимое аккумулятора не равно нулю (JNZ); перенос равен единице (JC); перенос равен нулю (JNC); адресуемый бит равен единице (JB); адресуемый бит равен нулю (JNB).
Для организации программных циклов удобно пользоваться командой DJNZ. В качестве счетчика циклов может использоваться регистр, прямоадресуемый байт (например, ячейка РПД)
Команда CJNE эффективно используется в процедурах ожидания какого-либо события. Например, команда
WAIT: CJNE A, P0, WAIT
будет выполняться до тех пор, пока на линиях порта 0 не установится информация, совпадающая с содержимым аккумулятора.
Все команды данной группы, за исключением CJNE не оказывают воздействия на флаги. Команда CJNE устанавливает флаг C, если первый операнд оказывается меньше второго.
Подпрограммы. Для обращения к подпрограммам необходимо использовать команды вызова подпрограмм (LCALL, ACALL). Эти команды в отличие от команд перехода (LJMP, AJMP) сохраняют в стеке адрес возврата в основную программу. Для возврата из подпрограммы необходимо выполнить команду RET. Команда RETI отличается от команды RET тем, что разрешает прерывания обслуженного уровня (раздел 4.4). Поэтому эту команду необходимо применять в конце подпрограмм, вызванных по прерыванию.