
- •Нефтегазопромысловое оборудование
- •Предисловие
- •Тема 1 насосы объемного действия
- •1.1. Классификация поршневых насосов
- •1.2. Принцип работы поршневого насоса
- •1.3. Закон движения поршня насоса
- •1.4. Средняя подача поршневых насосов всех типов
- •1.5. Коэффициент подачи поршневых насосов, факторы на него влияющие
- •1.6. Графики подачи поршневых насосов
- •1.7. Воздушные колпаки
- •1.8. Работа насоса и индикаторная диаграмма
- •1.9. Мощность и кпд поршневого насоса. Определение мощности привода
- •1.10. Определение усилий на основные детали поршневых насосов
- •1.11. Конструкция поршневого насоса: основные узлы и детали
- •1.12. Скважинные поршневые насосы
- •1.13. Эксплуатация поршневых насосов
- •1.14. Регулирование работы поршневого насоса
- •1.15. Роторные насосы
- •1.16. Дозировочные насосы
- •1.17. Смазка узлов приводной части насоса
- •Тема 2 динамические насосы
- •2.1. Схема и принцип действия центробежного насоса
- •2.2. Основное уравнение центробежного насоса
- •2.3. Действительный напор центробежного насоса
- •2.4. Подача центробежного насоса
- •2.5. Мощность и коэффициент полезного действия центробежного насоса
- •2.6. Уравновешивание осевого давления
- •2.7. Явление кавитации и допустимая высота всасывания
- •2.8. Зависимость подачи, напора и мощности от числа оборотов насоса
- •2.9. Коэффициент быстроходности колеса насоса
- •2.10. Рабочая характеристика центробежного насоса
- •2.11. Определение рабочей характеристики насоса при изменении частоты вращения вала
- •2.12. Обточка рабочих колес по диаметру
- •2.13. Влияние плотности и вязкости перекачиваемой жидкости на работу насоса
- •2.14. Работа центробежного насоса в одинарный трубопровод
- •2.15. Работа насоса в разветвленный трубопровод
- •2.16. Параллельная работа центробежных насосов
- •2.17. Последовательная работа центробежных насосов
- •2.18. Регулирование параметров работы центробежного насоса
- •2.19. Эксплуатация центробежных насосов
- •2.20. Конструктивные особенности центробежных насосов Конструкция рабочих колес и отводов центробежного насоса
- •Уплотнения в насосе
- •2.21. Конструкция центробежного насоса серии цнс-180
- •2.22. Осевые насосы
- •2.23. Вихревые насосы
- •2.24. Струйные насосы
- •2.25. Назначение, схема и устройство насосного блока бкнс
- •2.26. Схема системы пттд с использованием погружного центробежного электронасоса
- •Тема 3 компрессоры
- •3.1. Принцип работы и термодинамические условия работы поршневого компрессора
- •3.2. Индикаторная диаграмма идеального рабочего процесса компрессора
- •3.3. Работа на сжатие единицы массы газа в компрессоре
- •3.4. Индикаторная диаграмма реального рабочего процесса компрессора
- •3.5. Подача поршневого компрессора, коэффициент подачи
- •3.6. Многоступенчатое сжатие Принцип получения высоких давлений в поршневом компрессоре
- •Индикаторная диаграмма двухступенчатого компрессора
- •3.7. Мощность и коэффициент полезного действия поршневого компрессора
- •3.8. Охлаждение компрессора, схема систем охлаждения
- •3.9. Принцип расчета системы охлаждения
- •3.10. Конструкции поршневых компрессоров
- •3.11. Основные узлы и детали компрессора
- •3.12. Системы смазки компрессора
- •3.13. Регулирование производительности поршневых компрессоров
- •3.14. Турбокомпрессоры. Принцип работы, схема
- •3.15. Особенности конструкции турбокомпрессора. Сравнение с поршневым компрессором
- •3.16. Характеристика турбокомпрессора
- •3.17. Винтовые компрессоры
- •3.18. Ротационные компрессоры
- •3.19. Газомотокомпрессоры
- •3.20. Эксплуатация поршневых компрессоров
- •3.21. Типы компрессоров, их применение
- •3.22. Компрессорная станция
- •3.23. Неисправности компрессоров
- •Тема 4 оборудование для эксплуатации скважин
- •4.1. Конструкции и обозначения обсадных труб
- •4.2. Назначение и конструкция колонных головок
- •4.3. Конструкция трубных головок
- •4.4. Фонтанная арматура
- •4.5. Запорные и регулирующие устройства фонтанной арматуры и манифольда
- •4.6. Монтаж и демонтаж фонтанной арматуры
- •4.7. Эксплуатация и ремонт фонтанной арматуры
- •4.8. Принцип работы газлифтного подъемника
- •4.9. Компрессорное оборудование при газлифтной эксплуатации скважин
- •4.10. Схема работы бескомпрессорной газлифтной установки
- •4.11. Внутрискважинное оборудование при газлифтной эксплуатации скважин
- •4.12. Схема шсну
- •4.13. Скважинные штанговые насосы
- •4.14. Режим работы скважинных насосов. Динамограммы работы
- •4.15. Подача шсну. Коэффициент подачи
- •4.16. Ремонт, хранение и транспортировка скважинных насосов
- •4.17. Насосные штанги: конструкция, условия работы
- •4.18. Расчет и конструирование колонны штанг
- •4.19. Утяжеленный низ колонны штанг
- •4.20. Эксплуатация, транспортировка и хранение штанг
- •4.21. Насосно-компрессорные трубы
- •4.22. Расчет колонны насосно-компрессорных труб
- •4.23. Кинематика станка-качалки
- •4.24. Силы, действующие в точке подвеса штанг
- •4.25. Принцип уравновешивания станка-качалки
- •4.26. Грузовое уравновешивание станка-качалки
- •4.27. Крутящий момент на кривошипе станка-качалки
- •4.28. Мощность электродвигателя станка-качалки
- •4.29. Коэффициент полезного действия штанговой насосной установки
- •Ориентировочные значения кпд отдельных систем
- •4.30. Подбор оборудовании для штанговой насосной установки
- •4.31. Устьевое оборудование шсну
- •4.33. Основные типы балансирных стан ков-качалок
- •4.34. Канатная подвеска станка-качалки
- •4.35. Монтаж станка-качалки
- •4.36. Техника безопасности при эксплуатации скважин штанговыми насосами
- •4.37. Эксплуатация балансирных станков-качалок
- •4.38. Схема уэцн
- •4.40. Конструкция электроцентробежного насоса
- •4.41. Гидрозащита электродвигателя
- •4.42. Система токоподвода
- •4.43. Конструкция электродвигателя
- •4.44. Монтаж установки погружных эцн
- •4.45. Обслуживание установок погружных эцн
- •4.46. Назначение и конструкция обратного и спускного клапанов
- •4.47. Компоновка погружного агрегата электровинтовой насосной установки
- •4.48. Конструкция скважинного винтового насоса
- •4.49. Принципиальные схемы закрытой и открытой гпну
- •4.50. Принцип действия гидропоршневого насосного агрегата (гпна)
- •4.51. Схема работы и принцип действия диафрагменного насоса
- •4.52. Схема работы и принцип действия струйного насоса
- •4.53. Скважинный струйный насос
- •Тема 5 оборудование и инструмент для ремонта скважин
- •5.1. Классификация видов ремонтов и операций, проводимых в скважинах
- •5.2. Талевая система
- •5.3. Инструмент для проведения спуско-подьемных операций (стто)
- •Элеваторы
- •Спайдеры
- •5.4. Роторные установки
- •5.5. Трубные и штанговые механические ключи
- •5.6. Порядок проведения спуско-подъемных операций с применением апр
- •5.7. Подъемные лебедки
- •5.8. Подъемные агрегаты
- •5.9. Вертлюги
- •5.10. Противовыбросовое оборудование
- •5.11. Винтовой забойный двигатель
- •5.12. Ловильный инструмент
- •Тема 6 оборудование для технологических процессов
- •6.1. Насосные установки
- •6.2. Смесительные установки
- •6.3. Автоцистерны
- •6.4. Устьевое и вспомогательное оборудование
- •6.5. Оборудование для депарафинизации скважин
- •6.6. Оборудование для исследования скважин
- •6.7. Эксплуатационные пакеры
- •6.8. Эксплуатационные якори
- •6.9. Расположение оборудования при солянокислотной обработке скважины
- •6.10. Расположение оборудования при гидравлическом разрыве пласта
- •6.11. Расположение оборудования при промывке скважины
- •Тема 7 оборудование для механизации работ
- •7.1. Трубовоз твэ-6,5-131а
- •7.2. Агрегат для перевозки штанг апш
- •7.3. Промысловые самопогрузчики
- •7.4. Агрегат атэ-6
- •7.5. Установка для перевозки кабеля упк-2000п
- •7.6. Агрегат 2парс
- •7.7. Агрегат аза-3
- •7.8. Агрегат 2арок
- •7.9. Агрегат для обслуживания и ремонта водоводов 2арв
- •7.10. Маслозаправщик мз-4310ск
- •Список литературы
- •Оглавление
- •Тема 1. Насосы объемного действия
- •Тема 2. Динамические насосы
- •Тема 4. Оборудование для эксплуатации скважин
- •Тема 5. Оборудование и инструмент для ремонта скважин
- •Тема 6. Оборудование для технологических процессов
- •Тема 7. Оборудование для механизации работ
4.48. Конструкция скважинного винтового насоса
Конструкция
скважинного винтового насоса
предусматривает
использование двух уравновешенных
винтов с правым 7 и левым
4
направлениями
спирали. Винты изготовлены из титановых
сплавов для увеличения износостойкости
и полыми - для уменьшения
инерционных усилий (рис. 4.72.).
Осевые усилия от винтов приложены к эксцентриковой соединительной муфте 5, расположенной между ними, и взаимно компенсируются. Привод винтов осуществляется от расположенного в нижней части электродвигателя через протектор 10, эксцентриковую пусковую муфту 9 и вал 8. Эксцентриковые муфты обеспечивают необходимое вращение винтов 4 и 7. Пусковая муфта осуществляет пуск насоса при максимальном крутящем моменте двигателя, отключает насос при аварийном выходе его из строя, предотвращает движение винта в противоположную сторону при обесточивании двигателя или неправильном подключении кабеля.
Рис. 4.72. Схема винтового скважинного насоса : 1 - предохранительный клапан: 2 - фильтровая сетка; 3 - левая обойма; 4 - левый винт; 5 — эксцентриковая шарнирная соединительная муфта; 6-правая обойма; 7 — правый винт; 8 — вал; 9 — пусковая муфта; 10— протектор
Прием жидкости из скважины ведется через две фильтровые приемные сетки 2, расположенные вверху верхнего и внизу нижнего винтов. Общий выход жидкости происходит в пространстве между винтами, затем она проходит по кольцу между корпусом обоймы верхнего винта и кожухом насоса к многофункциональному предохранительному клапану 1 поршеньково-золотникового типа. Обойдя по каналу предохранительный клапан, жидкость проходит в шламовую трубку и попадает в НКТ.
Предохранительный клапан перепускает жидкость в НКТ при спуске насоса в скважину и из НКТ при подъеме, а также из НКТ в затрубное пространство при остановках насоса, недостаточном притоке из пласта, содержании в жидкости большого количество газа, повышении устьевого давления выше регламентированной величины (объемный насос не может работать при закрытом виде том выкиде). Шламовая труба представляет собой заглушённый сверху патрубок с боковыми отверстиями и предохраняет насос от попадания в него механических твердых частиц с поверхности и из откачиваемой жидкости при остановках. Шлам собирается между внутренней поверхностью НКТ и наружной поверхностью шламовой трубы.
4.49. Принципиальные схемы закрытой и открытой гпну
Тип принципиальной схемы циркуляции рабочей жидкости в гидропоршневых насосным установках (ГПНУ) предопределяет способ возврата рабочей жидкости на поверхность. В установках с закрытой схемой жидкость после совершения полезной работы из гидродвигателя по отдельному каналу поднимается на поверхность. Продукция пласта, выходящая из скважинного насоса, поднимается по своему отдельному каналу. В установках с открытой схемой жидкость, выйдя из гидродвигателя, смешивается с жидкостью, выходящей из скважинного насоса, и поднимается на поверхность по общему каналу.
Недостатком первой схемы является большая металлоемкость, поскольку от устья к погружному агрегату необходимо спустить три герметичных трубопровода: для подачи рабочей жидкости к агрегату, для ее отвода и для подъема пластовой жидкости. Достоинством этой схемы являются незначительные потери рабочей жидкости, определяемые только лишь утечками из системы привода.
Следует заметить, что производительность системы подготовки рабочей жидкости всей установки в значительной степени зависит от качества подготовки рабочей жидкости.
Установки с открытой схемой обладают меньшей металлоемкостью, так как предполагают каналы только для двух потоков жидкости: сверху вниз - рабочей, а снизу вверх - смеси рабочей и пластовой жидкостей. Соответственно проще и оборудование устья. Недостатком этой системы является необходимость обработки большого количества рабочей жидкости, что требует применения сложных и высокопроизводительных систем для ее подготовки.
Принципиальные схемы установок обоих типов приведены на рис. 4.73.
Рис. 4.73. Принципиальные схемы закрытой (а) и открытой (б) гидропоршневых насосных установок:
1 - электродвигатель; 2 - силовой насос; 3 - линия подачи рабочей жидкости; 4 — гидродвигатель; 5 — скважинный гидропоршневой насос; 6 — канал для отвода продукции скважины; 7 - канал для отвода рабочей жидкости; 8-блок подготовки рабочей жидкости; 9 — трубопровод для подачи рабочей жидкости; 10- трубопровод для отвода скважинной жидкости
В каждой из них двигатель 1 приводит в действие силовой насос 2, который по колонне труб 3 подает рабочую жидкость к двигателю 4 гидропоршневого агрегата (ГПНА). Скважинный насос 5 ГПНА, приводимый в действие двигателем 4, забирает пластовую жидкость из скважины и по колонне труб 6 направляет ее вверх. В установке с открытой схемой рабочая жидкость из мотора поднимается на поверхность по колонне труб 6, а в установке с закрытой схемой - по отдельной колонне 7.
В установке с открытой схемой смесь пластовой и рабочей жидкостей из колонны 6 направляется в устройство подготовки рабочей жидкости 8, из которого очищенная нефть по трубопроводу 9 поступает на прием силового насоса 2, а остальная часть потока вместе с отдельными примесями направляется в сборный промысловый коллектор.
В установке с закрытой схемой рабочая жидкость возвращается в буферную емкость устройства подготовки 8, откуда трубопроводом 9 направляется на прием силового насоса 2. Пластовая жидкость из колонны 7 отводится в сборный промысловый коллектор, а небольшая часть жидкости (1... 2%) по трубопроводу 10 направляется в устройство подготовки 8 для компенсации потерь рабочей жидкости.
Блочные автоматизированные установки гидропоршневых насосов (УГН) предназначены для добычи нефти из 2...8 кустовых наклонно направленных скважин с внутренними диаметрами эксплуатационных колонн 117,7...155.3 мм. Установки можно применять для добычи нефти плотностью 870 кг/м3, содержащей до 99 % воды, до 0,1 г/л механических примесей, до 0,01 г/л сероводорода, при температуре пласта до 120°С. Установки изготовляются в климатических исполнениях У, ХЛ.
Пример условного обозначения установки гидропоршневых насосов УГН25-150-25: УГН - установка гидропоршневых насосов; 25 - подача одного гидропорпшевого агрегата, м /сут; 150 -подача установки суммарная, м3/сут; 25 - давление нагнетания гидропоршневого агрегата при заданном давлении нагнетания рабочей жидкости, МПа.
Установка УГН (рис. 4.74.) состоит из скважинного и наземного оборудования.
Рис. 4.74. Установка гидропоршневых насосов;
1 - замерное устройство; 2 - технологический блок; 3 - блок управления; 4 - оборудование устья скважины; 5 - НКТ; 6 - гидропоршневой насосный агрегат; 7-пакер
Принцип действия установки основан на использовании гидравлической энергии жидкости, закачиваемой под высоким давлением по специальному каналу в гидравлический забойный поршневой двигатель возвратно-поступательного действия, преобразующий эту энергию в возвратно-поступательное движение жестко связанного с двигателем поршневого насоса.
Скважинное оборудование включает в себя гидропоршневой насосный агрегат, размещенный в нижней (призабойной) части обсадной колонны; систему каналов, по которым подводится рабочая жидкость, отводится добытая и отработанная жидкость; устьевую арматуру и вспомогательные устройства - ловильную камеру, мачту с подъемным устройством и переключателем потока рабочей жидкости.
В состав наземного оборудования входят устройства для подготовки рабочей жидкости; насосы высокого давления; распределительная гребенка, которая служит для направления рабочей жидкости под заданным давлением с требуемым расходом к гидропоршневым насосным агрегатам; силовое и контрольно-регулирующее электрооборудование.
Использование гидропривода позволяет при небольшом давлении силового насоса применить погружной насос с высоким рабочим давлением или при небольшом расходе рабочей жидкости - с высокой подачей. Это достигается возможностью изменения в определенном диапазоне отношения эффективных площадей насоса и гидродвигателя и установкой поршней разного диаметра как в насосе, так и в гидродвигателе.
Наземная станция установки УГН состоит из двух блоков: технологического и управления. Все оборудование наземной станции располагается в двух транспортабельных блоках-боксах размерами 3х12 и 3х6 м.
В технологическом блоке сепаратор вместимостью 16м3 располагается на «втором этаже», что обеспечивает создание силовым насосом гидростатического подпора около 1,5 м и позволяет разместить все остальное оборудование под газосепаратором и рядом с ним: три силовых насоса, из которых один - резервный; центробежные насосы, позволяющие спокойно встраивать установку в систему сбора с давлением до 2,5 МПа; гидроциклоны с циркуляцией рабочей жидкости; распределительную гребенку; многопоточный дозировочный насос; емкость с запасом химреагентов.
Для привода гидропорпшевого насоса применяются трех- или пятиплунжерные насосы высокого давления со специальным исполнением гидроблока, рассчитанные на продолжительную непрерывную работу с минимальным обслуживанием.