
- •Нефтегазопромысловое оборудование
- •Предисловие
- •Тема 1 насосы объемного действия
- •1.1. Классификация поршневых насосов
- •1.2. Принцип работы поршневого насоса
- •1.3. Закон движения поршня насоса
- •1.4. Средняя подача поршневых насосов всех типов
- •1.5. Коэффициент подачи поршневых насосов, факторы на него влияющие
- •1.6. Графики подачи поршневых насосов
- •1.7. Воздушные колпаки
- •1.8. Работа насоса и индикаторная диаграмма
- •1.9. Мощность и кпд поршневого насоса. Определение мощности привода
- •1.10. Определение усилий на основные детали поршневых насосов
- •1.11. Конструкция поршневого насоса: основные узлы и детали
- •1.12. Скважинные поршневые насосы
- •1.13. Эксплуатация поршневых насосов
- •1.14. Регулирование работы поршневого насоса
- •1.15. Роторные насосы
- •1.16. Дозировочные насосы
- •1.17. Смазка узлов приводной части насоса
- •Тема 2 динамические насосы
- •2.1. Схема и принцип действия центробежного насоса
- •2.2. Основное уравнение центробежного насоса
- •2.3. Действительный напор центробежного насоса
- •2.4. Подача центробежного насоса
- •2.5. Мощность и коэффициент полезного действия центробежного насоса
- •2.6. Уравновешивание осевого давления
- •2.7. Явление кавитации и допустимая высота всасывания
- •2.8. Зависимость подачи, напора и мощности от числа оборотов насоса
- •2.9. Коэффициент быстроходности колеса насоса
- •2.10. Рабочая характеристика центробежного насоса
- •2.11. Определение рабочей характеристики насоса при изменении частоты вращения вала
- •2.12. Обточка рабочих колес по диаметру
- •2.13. Влияние плотности и вязкости перекачиваемой жидкости на работу насоса
- •2.14. Работа центробежного насоса в одинарный трубопровод
- •2.15. Работа насоса в разветвленный трубопровод
- •2.16. Параллельная работа центробежных насосов
- •2.17. Последовательная работа центробежных насосов
- •2.18. Регулирование параметров работы центробежного насоса
- •2.19. Эксплуатация центробежных насосов
- •2.20. Конструктивные особенности центробежных насосов Конструкция рабочих колес и отводов центробежного насоса
- •Уплотнения в насосе
- •2.21. Конструкция центробежного насоса серии цнс-180
- •2.22. Осевые насосы
- •2.23. Вихревые насосы
- •2.24. Струйные насосы
- •2.25. Назначение, схема и устройство насосного блока бкнс
- •2.26. Схема системы пттд с использованием погружного центробежного электронасоса
- •Тема 3 компрессоры
- •3.1. Принцип работы и термодинамические условия работы поршневого компрессора
- •3.2. Индикаторная диаграмма идеального рабочего процесса компрессора
- •3.3. Работа на сжатие единицы массы газа в компрессоре
- •3.4. Индикаторная диаграмма реального рабочего процесса компрессора
- •3.5. Подача поршневого компрессора, коэффициент подачи
- •3.6. Многоступенчатое сжатие Принцип получения высоких давлений в поршневом компрессоре
- •Индикаторная диаграмма двухступенчатого компрессора
- •3.7. Мощность и коэффициент полезного действия поршневого компрессора
- •3.8. Охлаждение компрессора, схема систем охлаждения
- •3.9. Принцип расчета системы охлаждения
- •3.10. Конструкции поршневых компрессоров
- •3.11. Основные узлы и детали компрессора
- •3.12. Системы смазки компрессора
- •3.13. Регулирование производительности поршневых компрессоров
- •3.14. Турбокомпрессоры. Принцип работы, схема
- •3.15. Особенности конструкции турбокомпрессора. Сравнение с поршневым компрессором
- •3.16. Характеристика турбокомпрессора
- •3.17. Винтовые компрессоры
- •3.18. Ротационные компрессоры
- •3.19. Газомотокомпрессоры
- •3.20. Эксплуатация поршневых компрессоров
- •3.21. Типы компрессоров, их применение
- •3.22. Компрессорная станция
- •3.23. Неисправности компрессоров
- •Тема 4 оборудование для эксплуатации скважин
- •4.1. Конструкции и обозначения обсадных труб
- •4.2. Назначение и конструкция колонных головок
- •4.3. Конструкция трубных головок
- •4.4. Фонтанная арматура
- •4.5. Запорные и регулирующие устройства фонтанной арматуры и манифольда
- •4.6. Монтаж и демонтаж фонтанной арматуры
- •4.7. Эксплуатация и ремонт фонтанной арматуры
- •4.8. Принцип работы газлифтного подъемника
- •4.9. Компрессорное оборудование при газлифтной эксплуатации скважин
- •4.10. Схема работы бескомпрессорной газлифтной установки
- •4.11. Внутрискважинное оборудование при газлифтной эксплуатации скважин
- •4.12. Схема шсну
- •4.13. Скважинные штанговые насосы
- •4.14. Режим работы скважинных насосов. Динамограммы работы
- •4.15. Подача шсну. Коэффициент подачи
- •4.16. Ремонт, хранение и транспортировка скважинных насосов
- •4.17. Насосные штанги: конструкция, условия работы
- •4.18. Расчет и конструирование колонны штанг
- •4.19. Утяжеленный низ колонны штанг
- •4.20. Эксплуатация, транспортировка и хранение штанг
- •4.21. Насосно-компрессорные трубы
- •4.22. Расчет колонны насосно-компрессорных труб
- •4.23. Кинематика станка-качалки
- •4.24. Силы, действующие в точке подвеса штанг
- •4.25. Принцип уравновешивания станка-качалки
- •4.26. Грузовое уравновешивание станка-качалки
- •4.27. Крутящий момент на кривошипе станка-качалки
- •4.28. Мощность электродвигателя станка-качалки
- •4.29. Коэффициент полезного действия штанговой насосной установки
- •Ориентировочные значения кпд отдельных систем
- •4.30. Подбор оборудовании для штанговой насосной установки
- •4.31. Устьевое оборудование шсну
- •4.33. Основные типы балансирных стан ков-качалок
- •4.34. Канатная подвеска станка-качалки
- •4.35. Монтаж станка-качалки
- •4.36. Техника безопасности при эксплуатации скважин штанговыми насосами
- •4.37. Эксплуатация балансирных станков-качалок
- •4.38. Схема уэцн
- •4.40. Конструкция электроцентробежного насоса
- •4.41. Гидрозащита электродвигателя
- •4.42. Система токоподвода
- •4.43. Конструкция электродвигателя
- •4.44. Монтаж установки погружных эцн
- •4.45. Обслуживание установок погружных эцн
- •4.46. Назначение и конструкция обратного и спускного клапанов
- •4.47. Компоновка погружного агрегата электровинтовой насосной установки
- •4.48. Конструкция скважинного винтового насоса
- •4.49. Принципиальные схемы закрытой и открытой гпну
- •4.50. Принцип действия гидропоршневого насосного агрегата (гпна)
- •4.51. Схема работы и принцип действия диафрагменного насоса
- •4.52. Схема работы и принцип действия струйного насоса
- •4.53. Скважинный струйный насос
- •Тема 5 оборудование и инструмент для ремонта скважин
- •5.1. Классификация видов ремонтов и операций, проводимых в скважинах
- •5.2. Талевая система
- •5.3. Инструмент для проведения спуско-подьемных операций (стто)
- •Элеваторы
- •Спайдеры
- •5.4. Роторные установки
- •5.5. Трубные и штанговые механические ключи
- •5.6. Порядок проведения спуско-подъемных операций с применением апр
- •5.7. Подъемные лебедки
- •5.8. Подъемные агрегаты
- •5.9. Вертлюги
- •5.10. Противовыбросовое оборудование
- •5.11. Винтовой забойный двигатель
- •5.12. Ловильный инструмент
- •Тема 6 оборудование для технологических процессов
- •6.1. Насосные установки
- •6.2. Смесительные установки
- •6.3. Автоцистерны
- •6.4. Устьевое и вспомогательное оборудование
- •6.5. Оборудование для депарафинизации скважин
- •6.6. Оборудование для исследования скважин
- •6.7. Эксплуатационные пакеры
- •6.8. Эксплуатационные якори
- •6.9. Расположение оборудования при солянокислотной обработке скважины
- •6.10. Расположение оборудования при гидравлическом разрыве пласта
- •6.11. Расположение оборудования при промывке скважины
- •Тема 7 оборудование для механизации работ
- •7.1. Трубовоз твэ-6,5-131а
- •7.2. Агрегат для перевозки штанг апш
- •7.3. Промысловые самопогрузчики
- •7.4. Агрегат атэ-6
- •7.5. Установка для перевозки кабеля упк-2000п
- •7.6. Агрегат 2парс
- •7.7. Агрегат аза-3
- •7.8. Агрегат 2арок
- •7.9. Агрегат для обслуживания и ремонта водоводов 2арв
- •7.10. Маслозаправщик мз-4310ск
- •Список литературы
- •Оглавление
- •Тема 1. Насосы объемного действия
- •Тема 2. Динамические насосы
- •Тема 4. Оборудование для эксплуатации скважин
- •Тема 5. Оборудование и инструмент для ремонта скважин
- •Тема 6. Оборудование для технологических процессов
- •Тема 7. Оборудование для механизации работ
4.41. Гидрозащита электродвигателя
Протектор гидрозащиты типа Г (рис. 4.62.) устанавливается между насосом и электродвигателем 6 и служит для защиты последнего от попадания в него пластовой жидкости, а также компенсирует температурные изменения объема.
Протектор
состоит из двух камер А
и
Б,
разделенных
резиновой диафрагмой
4.
Камеры
заполнены тем же маслом,
что и двигатель.
При нагреве масла во время работы двигателя давление в камере Б растет, оно передается диафрагмой в полость А и далее в полость В. Масло из полости А будет вытесняться в полость В до тех пор, пока давление в камере А не снизится и пластовая жидкость не станет поступать в нее через обратный клапан 5. Чтобы диафрагма не изолировала друг от друга полости А и В, в протекторе предусмотрена соединительная трубка 8. Для более надежной герметизации двигателя имеются два торцевых уплотнения 1 и 3. Опора 2 воспринимает осевые усилия, действующие на вал.
Рис.4.62. Гидрозащита типа Г
При гидрозащите типа Г опоры скольжения вала насоса работают в подаваемой пластовой жидкости.
Компенсатор 7 гидрозащиты располагается ниже электродвигателя и предназначен для компенсации изменения объема масла в двигателе при его нагреве и охлаждении и компенсации перехода масла из двигателя в полость Б. Компенсатор (рис. 4.63.) представляет собой камеру, образуемую эластичной диафрагмой, заполняемую тем же маслом, что и электродвигатель. Диафрагма защищена от повреждений стальным корпусом.
Рис 4.63. Конструкция компенсатора гидрозащиты типа Г:
1 — поршень автоматического клапана; 2 — диафрагма
Полость за диафрагмой сообщена с затрубным пространством отверстиями в корпусе компенсатора. Пробка, расположенная на наружной поверхности компенсатора, предназначена для закачки масла в компенсатор, а внутреннее отверстие под заглушку - для выхода воздуха при заполнении его маслом, а также для сообщения полости двигателя и компенсатора.
После заполнения маслом компенсатора заглушка должна быть закрыта, а после монтажа установки и спуска ее в скважину заглушка автоматически открывается при погружении компенсатора под уровень пластовой жидкости на 15...30м.
В шифре гидрозащиты, например. 1Г51 приняты следующие обозначения: 1 - модификация, «Г» - тип защиты, 5 - условный размер обсадной колонны, 1 - номер разработки. Кроме гидрозащиты типа Г, на нефтяных промыслах России нашла широкое применение гидрозащита типа П.
Основные части протектора типа П (рис. 4.64.); вал, торцовые уплотнения, корпуса, камеры, связанные гидравлически между собой последовательно с помощью отверстий, выполненных во фланцах в месте установки торцевых уплотнений.
Рис. 4.64. Конструкция протектора типа П:
1 - головка верхняя; 2 - трубка; 3, 4, 7, 8-пробки; 5, 17-корпуса; 6. 9-диафрагмы; 10- подпятник; 11 - пята; 12- торцевое уплотнение; 13 - вал; 14- подшипник; 15, 16— трубки; 18 - нижняя головка
Внутренние полости диафрагм заполнены маслом.
Торцовые уплотнения с двумя диафрагмами, закрепленными на цилиндрах, образуют верхнюю камеру над торцовым уплотнением, в районе верхней диафрагмы - среднюю камеру, в районе нижней диафрагмы - нижнюю камеру. Трубки между полостями камер расположены таким образом, что при движении сверху жидкость должна проходить по лабиринту и в двух местах этот путь механически разделяется двумя диафрагмами.
Полости, образованные диафрагмами, снабжены клапанами, через которые сбрасывается масло при избыточном давлении. Заполнение полости протектора производится снизу. Диэлектрическое масло проходит по валу к трубке, через отверстия в трубе заполняет нижнюю полость, воздух и избыток масла через отверстия в трубе поступают в зону нижнего торцового уплотнения, заполняют его полость и под избыточным давлением через клапан выходят в следующую полость. Воздух выходит в отверстие ниппеля под пробку между нижней и средней камерами, а масло стекает на дно полости, заполняет ее до появления в отверстии под пробку и после его закрытия продолжает поступать в полость верхней диафрагмы. Далее заполняются полости в средней и верхней камеры, при этом для удаления воздуха используются пробки в верхней головке.
Полости внутри диафрагмы защищены от проникновения пластовой жидкости по валу торцевым уплотнением. Нижний конец диафрагмы протектора закреплен герметично, верхний имеет упругое крепление при помощи браслетных пружин, что позволяет осуществлять регулирование давления при температурных расширениях масла.
Для устранения перепада давления в верхней камере имеется трубка, через которую поступает пластовая жидкость в наружную полость, расположенную над диафрагмой средней камеры.
При работе двигателя масло расширяется, при этом растягивает резиновую диафрагму и прижимает ее к внутренней поверхности корпуса протектора. Лишний объем масла будет выдавлен через верхний конец диафрагмы, который имеет упругое крепление.
При остановке и охлаждении двигателя объем масла будет уменьшаться и резиновая диафрагма, воспринимая давление окружающей среды, будет втягиваться внутрь и пополнять маслом полость двигателя.
При последующем включении двигателя процесс изменения объема масла повторится, то есть при любых изменениях объема и давления масла диафрагмы будут «дышать», отслеживать объем находящегося масла в двигателе и уравновешивать давление в его полости с давлением окружающей среды.
Основным узлом протекторов являются торцевые уплотнения, предназначенные для герметизации вращающихся валов диаметрами 25 и 35мм.