
- •Нефтегазопромысловое оборудование
- •Предисловие
- •Тема 1 насосы объемного действия
- •1.1. Классификация поршневых насосов
- •1.2. Принцип работы поршневого насоса
- •1.3. Закон движения поршня насоса
- •1.4. Средняя подача поршневых насосов всех типов
- •1.5. Коэффициент подачи поршневых насосов, факторы на него влияющие
- •1.6. Графики подачи поршневых насосов
- •1.7. Воздушные колпаки
- •1.8. Работа насоса и индикаторная диаграмма
- •1.9. Мощность и кпд поршневого насоса. Определение мощности привода
- •1.10. Определение усилий на основные детали поршневых насосов
- •1.11. Конструкция поршневого насоса: основные узлы и детали
- •1.12. Скважинные поршневые насосы
- •1.13. Эксплуатация поршневых насосов
- •1.14. Регулирование работы поршневого насоса
- •1.15. Роторные насосы
- •1.16. Дозировочные насосы
- •1.17. Смазка узлов приводной части насоса
- •Тема 2 динамические насосы
- •2.1. Схема и принцип действия центробежного насоса
- •2.2. Основное уравнение центробежного насоса
- •2.3. Действительный напор центробежного насоса
- •2.4. Подача центробежного насоса
- •2.5. Мощность и коэффициент полезного действия центробежного насоса
- •2.6. Уравновешивание осевого давления
- •2.7. Явление кавитации и допустимая высота всасывания
- •2.8. Зависимость подачи, напора и мощности от числа оборотов насоса
- •2.9. Коэффициент быстроходности колеса насоса
- •2.10. Рабочая характеристика центробежного насоса
- •2.11. Определение рабочей характеристики насоса при изменении частоты вращения вала
- •2.12. Обточка рабочих колес по диаметру
- •2.13. Влияние плотности и вязкости перекачиваемой жидкости на работу насоса
- •2.14. Работа центробежного насоса в одинарный трубопровод
- •2.15. Работа насоса в разветвленный трубопровод
- •2.16. Параллельная работа центробежных насосов
- •2.17. Последовательная работа центробежных насосов
- •2.18. Регулирование параметров работы центробежного насоса
- •2.19. Эксплуатация центробежных насосов
- •2.20. Конструктивные особенности центробежных насосов Конструкция рабочих колес и отводов центробежного насоса
- •Уплотнения в насосе
- •2.21. Конструкция центробежного насоса серии цнс-180
- •2.22. Осевые насосы
- •2.23. Вихревые насосы
- •2.24. Струйные насосы
- •2.25. Назначение, схема и устройство насосного блока бкнс
- •2.26. Схема системы пттд с использованием погружного центробежного электронасоса
- •Тема 3 компрессоры
- •3.1. Принцип работы и термодинамические условия работы поршневого компрессора
- •3.2. Индикаторная диаграмма идеального рабочего процесса компрессора
- •3.3. Работа на сжатие единицы массы газа в компрессоре
- •3.4. Индикаторная диаграмма реального рабочего процесса компрессора
- •3.5. Подача поршневого компрессора, коэффициент подачи
- •3.6. Многоступенчатое сжатие Принцип получения высоких давлений в поршневом компрессоре
- •Индикаторная диаграмма двухступенчатого компрессора
- •3.7. Мощность и коэффициент полезного действия поршневого компрессора
- •3.8. Охлаждение компрессора, схема систем охлаждения
- •3.9. Принцип расчета системы охлаждения
- •3.10. Конструкции поршневых компрессоров
- •3.11. Основные узлы и детали компрессора
- •3.12. Системы смазки компрессора
- •3.13. Регулирование производительности поршневых компрессоров
- •3.14. Турбокомпрессоры. Принцип работы, схема
- •3.15. Особенности конструкции турбокомпрессора. Сравнение с поршневым компрессором
- •3.16. Характеристика турбокомпрессора
- •3.17. Винтовые компрессоры
- •3.18. Ротационные компрессоры
- •3.19. Газомотокомпрессоры
- •3.20. Эксплуатация поршневых компрессоров
- •3.21. Типы компрессоров, их применение
- •3.22. Компрессорная станция
- •3.23. Неисправности компрессоров
- •Тема 4 оборудование для эксплуатации скважин
- •4.1. Конструкции и обозначения обсадных труб
- •4.2. Назначение и конструкция колонных головок
- •4.3. Конструкция трубных головок
- •4.4. Фонтанная арматура
- •4.5. Запорные и регулирующие устройства фонтанной арматуры и манифольда
- •4.6. Монтаж и демонтаж фонтанной арматуры
- •4.7. Эксплуатация и ремонт фонтанной арматуры
- •4.8. Принцип работы газлифтного подъемника
- •4.9. Компрессорное оборудование при газлифтной эксплуатации скважин
- •4.10. Схема работы бескомпрессорной газлифтной установки
- •4.11. Внутрискважинное оборудование при газлифтной эксплуатации скважин
- •4.12. Схема шсну
- •4.13. Скважинные штанговые насосы
- •4.14. Режим работы скважинных насосов. Динамограммы работы
- •4.15. Подача шсну. Коэффициент подачи
- •4.16. Ремонт, хранение и транспортировка скважинных насосов
- •4.17. Насосные штанги: конструкция, условия работы
- •4.18. Расчет и конструирование колонны штанг
- •4.19. Утяжеленный низ колонны штанг
- •4.20. Эксплуатация, транспортировка и хранение штанг
- •4.21. Насосно-компрессорные трубы
- •4.22. Расчет колонны насосно-компрессорных труб
- •4.23. Кинематика станка-качалки
- •4.24. Силы, действующие в точке подвеса штанг
- •4.25. Принцип уравновешивания станка-качалки
- •4.26. Грузовое уравновешивание станка-качалки
- •4.27. Крутящий момент на кривошипе станка-качалки
- •4.28. Мощность электродвигателя станка-качалки
- •4.29. Коэффициент полезного действия штанговой насосной установки
- •Ориентировочные значения кпд отдельных систем
- •4.30. Подбор оборудовании для штанговой насосной установки
- •4.31. Устьевое оборудование шсну
- •4.33. Основные типы балансирных стан ков-качалок
- •4.34. Канатная подвеска станка-качалки
- •4.35. Монтаж станка-качалки
- •4.36. Техника безопасности при эксплуатации скважин штанговыми насосами
- •4.37. Эксплуатация балансирных станков-качалок
- •4.38. Схема уэцн
- •4.40. Конструкция электроцентробежного насоса
- •4.41. Гидрозащита электродвигателя
- •4.42. Система токоподвода
- •4.43. Конструкция электродвигателя
- •4.44. Монтаж установки погружных эцн
- •4.45. Обслуживание установок погружных эцн
- •4.46. Назначение и конструкция обратного и спускного клапанов
- •4.47. Компоновка погружного агрегата электровинтовой насосной установки
- •4.48. Конструкция скважинного винтового насоса
- •4.49. Принципиальные схемы закрытой и открытой гпну
- •4.50. Принцип действия гидропоршневого насосного агрегата (гпна)
- •4.51. Схема работы и принцип действия диафрагменного насоса
- •4.52. Схема работы и принцип действия струйного насоса
- •4.53. Скважинный струйный насос
- •Тема 5 оборудование и инструмент для ремонта скважин
- •5.1. Классификация видов ремонтов и операций, проводимых в скважинах
- •5.2. Талевая система
- •5.3. Инструмент для проведения спуско-подьемных операций (стто)
- •Элеваторы
- •Спайдеры
- •5.4. Роторные установки
- •5.5. Трубные и штанговые механические ключи
- •5.6. Порядок проведения спуско-подъемных операций с применением апр
- •5.7. Подъемные лебедки
- •5.8. Подъемные агрегаты
- •5.9. Вертлюги
- •5.10. Противовыбросовое оборудование
- •5.11. Винтовой забойный двигатель
- •5.12. Ловильный инструмент
- •Тема 6 оборудование для технологических процессов
- •6.1. Насосные установки
- •6.2. Смесительные установки
- •6.3. Автоцистерны
- •6.4. Устьевое и вспомогательное оборудование
- •6.5. Оборудование для депарафинизации скважин
- •6.6. Оборудование для исследования скважин
- •6.7. Эксплуатационные пакеры
- •6.8. Эксплуатационные якори
- •6.9. Расположение оборудования при солянокислотной обработке скважины
- •6.10. Расположение оборудования при гидравлическом разрыве пласта
- •6.11. Расположение оборудования при промывке скважины
- •Тема 7 оборудование для механизации работ
- •7.1. Трубовоз твэ-6,5-131а
- •7.2. Агрегат для перевозки штанг апш
- •7.3. Промысловые самопогрузчики
- •7.4. Агрегат атэ-6
- •7.5. Установка для перевозки кабеля упк-2000п
- •7.6. Агрегат 2парс
- •7.7. Агрегат аза-3
- •7.8. Агрегат 2арок
- •7.9. Агрегат для обслуживания и ремонта водоводов 2арв
- •7.10. Маслозаправщик мз-4310ск
- •Список литературы
- •Оглавление
- •Тема 1. Насосы объемного действия
- •Тема 2. Динамические насосы
- •Тема 4. Оборудование для эксплуатации скважин
- •Тема 5. Оборудование и инструмент для ремонта скважин
- •Тема 6. Оборудование для технологических процессов
- •Тема 7. Оборудование для механизации работ
4.15. Подача шсну. Коэффициент подачи
Теоретическая подача скважинного насоса может быть выражена формулой:
(4.1)
где D - диаметр плунжера, м;
S - длина хода плунжера, м;
п - число двойных качаний в минуту.
При k = 1 подача минутная, при k = 60 - часовая, при k = 1440 - суточная.
Однако в действительности фактическая подача меньше теоретической, что обусловлено причинами, которые можно свести в две группы:
Первая группа - потери жидкости в скважинном насосе. К ним относятся;
-
наличие утечек через зазор плунжер - цилиндр;
-
наличие утечек у всасывающих и нагнетательных клапанов;
-
сжимаемость жидкости, обусловленная в первую очередь наличием газа;
-
отставание жидкости от плунжера при наполнении полости насоса.
Вторая группа - потери, обусловленные конструкцией установки:
- утечки через муфтовые соединения труб;
-деформация колонны штанг и насосно-компрессорных труб при работе насоса.
Потери жидкости в скважинном насосе характеризуются коэффициентом подачи насоса η, представляющим собой отношение фактической суточной подачи насоса QФ к теоретической QT:
(4.2)
Количество жидкости, протекающей через зазор плунжер - цилиндр, определяется по формуле:
(4.3)
где е - радиальный зазор, см;
g - ускорение свободного падения, см/с2;
v - кинематическая вязкость, см2/с,
∆Н. - перепад давлений на длине плунжера, м;
L - длина плунжера, м.
Если ось плунжера смещена относительно оси цилиндра, то утечки увеличиваются примерно в 2,5 раза.
Газ, поступающий вместе с жидкостью в цилиндр в свободном или растворенном состоянии, уменьшает коэффициент наполнения и может привести к блокировке насоса. При этом начинается периодический процесс уменьшения коэффициента наполнения до нуля, после чего газ, заполнивший весь подплунжерный объем насоса, вытесняется через нагнетательный клапан и процесс повторяется.
Отставание жидкости от плунжера при его ходе вверх обусловлено гидравлическим сопротивлением клапана потоку жидкости и, прежде всего, характеризуется вязкостью жидкости. При увеличении вязкости жидкости возрастает время запаздывания посадки клапана, что также приводит к увеличению утечек. Однако малая вязкость жидкости не означает увеличения коэффициента наполнения, так как увеличиваются утечки через зазор плунжер - цилиндр. Утечки жидкости через муфтовые соединения свидетельствуют либо об их износе, либо о недостаточном моменте свинчивания. И то и другое явление недопустимо при работе установки.
Деформация колонны штанг и труб при работе насоса приводит к уменьшению коэффициента подачи насоса, так как реальный ход плунжера меньше длины хода точки подвеса штанг. Фактическая длина хода плунжера может быть определена либо замером изношенной части цилиндра после подъема насоса на поверхность, либо расчетным путем.
При расчетном определении реальной величины хода плунжера относительно цилиндра необходимо учитывать, что и тот и другой соединены с наземной частью установки посредством упругих элементов - штанг и труб.
Для определения величины упругих деформаций штанг и труб величиной динамических нагрузок, которые по сравнению со статическими очень малы, можно пренебречь.
Рассмотрим фазы работы насоса.
1. В момент начала движения колонны штанг при ходе вверх (рис. 4.30. а) всасывающий клапан закрывается, в результате чего нагрузка от веса столба жидкости Рж, находящегося над плунжером, перестает действовать на трубы и перераспределяется на штанги. При этом штанги начинают растягиваться. Плунжер придет в движение только тогда, когда верхняя точка штанг переместится на величину деформации iшт (рис. 4.30. б) под действием силы Рж, которая, согласно закону Гука, будет определяться по формуле:
(4.4)
где L - глубина подвески насоса (соответствует длине штанг);
Ешт - модуль упругости материала штанг;
Fшт - площадь поперечного сечения штанг.
При этом насосно-компрессорные трубы сократятся, так как нагрузка, действовавшая на них, будет снята (рис. 4.30. в).
Рис.4.30. Деформация штанг и труб
Длина штанг и труб будет постоянной до тех пор, пока точка подвеса штанг не достигнет крайнего верхнего положения и не начнет перемещаться вниз.
2. При ходе штанг вниз (рис. 4.30. г, д, е) нагнетательный клапан откроется, всасывающий закроется и усилие Рж будет приложено к нижней части труб. В результате штанги сократятся на величину iшт, а трубы удлинятся на величину imp, определяемую аналогично по формуле:
(4.5)
где Етр - модуль упругости;
Fmp - площадь поперечного сечения труб.
При движении плунжера вниз длина штанг и труб будет постоянной до тех пор, пока не произойдет остановка штанг и плунжера и не начнется ход вверх. Всасывающий клапан при этом откроется, нагнетательный закроется, вследствие чего трубы сократятся на величину imp, штанги удлинятся на imp , т. е. повторится описанный цикл.
Таким образом, деформация штанг и труб уменьшает длину хода плунжера относительно цилиндра по сравнению с длиной хода точки подвеса штанг на величину iшт + imp как при ходе вверх, так и при ходе вниз.
Реальная длина хода плунжера при наличии ступенчатой колонны штанг l1+l2+…li = L, имеющих соответственно сечения F1, F2, … Fi может быть записана формулой:
(4.6)
При заякоренном насосе расчет реального хода должен вестись с учетом условия imp = 0.