
§ 2. Корни многочленов. Отделение кратных корней.
Если при значении
многочлен
принимает значение
,
то число
называется корнем этого многочлена.
Число
является корнем многочлена тогда и
только тогда, когда
делится на
,
т.е.
.
Если при этом
делится на
,
но уже не делится на
,
то
называется
-кратным
корнем многочлена
.
Корни кратности
называются простыми корнями многочлена.
Чтобы проверить, будет ли число
корнем многочлена
и какой кратности, можно воспользоваться
схемой Горнера. Сначала
делится на
,
затем, если остаток равен нулю, полученное
частное делится снова на
и т.д. до получения ненулевого остатка.
Пример 1. Проверить, является ли
число
корнем многочлена
и найти кратность.
Решение. Деление на
осуществляем по схеме Горнера
— корень кратности 2.
Пусть
— все различные корни многочлена
с кратностями, равными соответственно
— старший коэффициент
.
Тогда
.Корень
многочлена кратности
является корнем кратности
для его производной. Поэтому
,
где
— многочлен, уже не имеющий
своими корнями. Отсюда н.о.д. многочленов
и
равен
.
Следовательно, многочлен
имеет числа
простыми корнями.
Теперь для отыскания всех корней
многочлена
достаточно найти все корни многочлена
.
Это бывает сделать проще, так как степень
меньше степени
,
когда
.
Построение многочлена
называется отделением кратных корней
многочлена
.
Пример 2. Отделить кратные корни
многочлена
.
Решение.
.
Находим
.
Для этого делим с остатком
на
:
делится на остаток
.
Поэтому
.
Искомый многочлен, отделяющий кратные
корни
,
равен
.
Заметим, что в примере 2 все корни
легко вычислить.
Литература:
— § 22,
— § 9.4;
— № 555-559, 563-566, 569, 570, 585.
§ 3. Вычисление корней многочлена.
Задача вычисления корней некоторого
многочлена часто возникает в практике.
Согласно основной теореме алгебры, все
корни произвольного многочлена
с коэффициентами из числового поля
содержатся в поле комплексных чисел
.
Однако не существует какого-либо
универсального метода вычисления этих
корней. Метод решения этой задачи зависит
от степени многочлена и числового поля
.
Мы перечислим лишь самые основные методы
решения задачи вычисления корней
многочлена.
-
Корни многочленов 3-й и 4-й степени.
Если
,
то для отыскания всех корней многочлена
необходимо решить уравнение
(1)
Разделим обе части (1) на
.
В результате получим уравнение
(2)
имеющее те же корни, что и уравнение
(1). Сделаем теперь замену неизвестного
.
Эту замену проще всего осуществить,
представляя многочлен
по степеням
с помощью схемы Горнера (§
1) и делая затем замену
.
В результате замены получим уравнение
(3)
Корни уравнения (3) находятся по формуле
Кардано
где,
,
(корни извлекаются в поле комплексных
чисел
).
Применяя эту формулу, нужно для каждого
их трех значений
брать то значение
,
для которого выполняется условие
(такое значение всегда существует).
Если
— все корни уравнения (3), то
— все корни уравнения (1) и многочлена
.
Пример 1. Найти корни многочлена
.
Решение. Разложим многочлен
по степеням
.
Полагая
,
получим уравнение
.
Его корни находятся по формуле
,
где
или
.
Значениями корня
являются числа
.
Соответствующие им значения второго
корня
Отсюда
.
Корни многочлена
,
.
Если
— многочлен 4-й степени, то для вычисления
его корней достаточно иметь способ
вычисления всех корней уравнения вида
(4)
Способ Феррари решения уравнения (4) состоит в следующем.
Левую часть (4) представляют в виде
, (5)
а затем подбирают
так, чтобы выражение в квадратных скобках
стало квадратом двучлена первой степени.
Для этого необходимо и достаточно
выполнение условия
, (6)
из которого следует, что
является корнем вспомогательного
кубического уравнения (6). Теперь находим
какой-нибудь один корень
и, подставляя его значение в (5), разлагаем
левую часть (4) как разность квадратов
на множители. Задача вычисления корней
сведена теперь к решению двух квадратных
уравнений.
Пример 2. Найти корни многочлена
.
Решение. Составим уравнение
(7)
Представим левую часть (7) в виде
(8)
Подберем
так, чтобы дискриминант квадратного
трехчлена в квадратных скобках был
равен нулю:
или
.
Можно заметить, что 4 — один из корней
этого уравнения. Тогда подставим
в (8) и уравнение (7) примет вид:
или
.
Отсюда, решая уравнения
и
,
получим корни нашего многочлена
Литература:
— § 38,
— № 167, 173, 174.
2. Рациональные корни многочленов с рациональными коэффициентами.
Многочлен
имеет те же корни, что и многочлен
с целыми коэффициентами, полученный из
умножением на общее кратное знаменателей
всех коэффициентов
.
Если несократимая дробь
является корнем многочлена
с целыми коэффициентами, то выполняются
следующие условия:
1)
— делитель числа
;
2)
— делитель числа
;
3) для любого целого числа
число
является делителем числа
.
Поэтому все рациональные корни многочлена
(если они существуют) нужно искать среди
несократимых дробей, удовлетворяющих
условиям 1, 2, 3.
Если
,
то все рациональные корни
являются целыми числами.
Пример. Найти рациональные корни
многочлена
и определить их кратность.
Решение. Если
— несократимая дробь, является корнем
,
то
делит 12, а
делит 2. Все делители 12:
,
а делители 2: 1,2.
Зафиксируем
.
Тогда по (3) условию
.
В качестве
возьмем
и
.
Тогда
и
.
.
.
Числа 1 и -1 не являются корнями. Если
число
— корень, то
и
.
Такому условию удовлетворяют -2, 4. С
помощью схемы Горнера выясняем, что
число -2 является корнем кратности 2.
Далее, зафиксируем
.
Тогда
и
(
).
Проверять надо лишь
взаимно простые с
,
т.е.,
.
Среди этих чисел условию (
)
удовлетворяют -1, 3. Проверяя по схеме
Горнера дроби
и
выясняем, что корнем является
.
Итак,
— простой корень,
— корень кратности 2.
Литература:
— § 57,
— § 11, 3,
— № 649-651.