
- •Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 1. Векторная алгебра.
- •1.1. Понятие вектора и линейные операции над векторами.
- •1.1.1. Понятие вектора.
- •1.1.2. Линейные операции над векторами.
- •Свойства сложения векторов:
- •1.1.3. Понятие линейной зависимости векторов.
- •1.1.4. Линейные комбинации двух векторов.
- •Доказательство.
- •1.1.5. Линейные комбинации трех векторов.
- •Доказательство.
- •1.1.6. Линейная зависимость четырех векторов.
- •1.1.7. Понятие базиса. Аффинные координаты.
- •1.1.8. Проекция вектора на ось.
- •1.1.9. Декартова прямоугольная система координат в пространстве. (дпск)
- •1.2. Скалярное произведение двух векторов.
- •1.2.1. Определение скалярного произведения (сп).
- •1.2.2. Геометрические свойства сп.
- •Доказательство.
- •1.2.3. Алгебраические свойства сп.
- •1.2.4. Выражение скалярного произведения (сп) в декартовых прямоугольных координатах (дпк).
- •1.3. Векторное произведение двух векторов.
- •1.3.1. Правые и левые тройки векторов и системы координат.
- •1.3.2. Векторное произведение двух векторов (вп).
- •1.3.3. Геометрические свойства вп.
- •1.3.4. Алгебраические свойства векторного произведения (вп).
- •1.3.5. Понятие матрицы и определителя второго и третьего порядка.
- •1.3.6. Выражение векторного произведения (вп) в декартовых прямоугольных координатах (дпк).
- •1.3.7. Смешанное произведение трех векторов.
- •1.3.8. Выражение смешанного произведения в декартовых координатах.
- •1.4. Уравнение линии на плоскости.
- •1.4.1.Параметрическое представление линии.
- •1.4.2.Уравнение линии в полярных координатах.
- •1.4.3. Пересечение двух линий.
- •1.4.4. Уравнение поверхности и уравнение линии в пространстве.
- •1.5. Различные виды уравнений прямой на плоскости.
- •1.5.1. Общее уравнение прямой.
- •1.5.2. Уравнение прямой с угловым коэффициентом.
- •1.5.3. Уравнение прямой в отрезках.
- •1.5.4. Каноническое уравнение прямой.
- •1.5.5. Параметрические уравнения прямой.
- •1.5.6. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых.
- •1.5.7. Нормированное уравнение прямой. Отклонение точки от прямой.
- •1.5.8. Приведение общего уравнения прямой к нормированному виду.
- •Тема 2. Геометрия на плоскости и в пространстве. Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 2. Кривые второго порядка.
- •2.1. Эллипс.
- •2.1.1. Определение эллипса и вывод его канонического уравнения.
- •2.1.2. Исследование формы эллипса.
- •2.1.3. Эксцентриситет и фокальные радиусы эллипса.
- •2.2. Гипербола.
- •2.2.1. Определение гиперболы и вывод ее канонического уравнения.
- •2.2.2. Исследование формы гиперболы.
- •Асимптоты гиперболы
- •Равнобочная гипербола
- •Сопряженная гипербола
- •2.2.3. Эксцентриситет и фокальные радиусы гиперболы.
- •Фокальные радиусы
- •2.3. Парабола.
- •2.3.1. Определение параболы и ее уравнение.
- •2.3.2. Исследование формы параболы.
- •2.4. Общее свойство кривых второго порядка - эллипса, гиперболы и параболы.
- •2.4.1. Директриса эллипса гиперболы и параболы.
- •2.4.2. Полярное уравнение кривой второго порядка.
- •Тема 3. Вещественные и комплексные числа. Общие сведения
- •Краткое содержание
- •Практикум
- •3.1. Плоскость как поверхность первого порядка.
- •3.2. Неполные уравнения плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •3.5. Уравнение прямой в пространстве.
- •3.6. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой.
- •3.7. Некоторые дополнительные предложения и примеры.
- •Тема 4. Числовые последовательности. Общие сведения
- •Прямое произведение двух множеств.
- •4.1.2.Вещественные числа и их изображение на числовой оси. Основные свойства рациональных чисел.
- •Измерение отрезков числовой оси.
- •4.1.3. Ограниченные множества вещественных чисел.
- •Теорема 1.
- •4.1.4. Некоторые конкретные множества вещественных чисел.
- •4.2. Теория последовательностей.
- •4.2.1. Понятие числовой последовательности.
- •4.2.2. Бесконечно большие и бесконечно малые последовательности.
- •Примеры.
- •4.2.3. Основные теоремы о бесконечно малых последовательностях.
- •4.2.4. Сходящиеся последовательности. Основные определения.
- •Определение 2.
- •4.2.5. Основные свойства сходящихся последовательностей.
- •4.2.6. Арифметические свойства сходящихся последовательностей.
- •4.2.7. Монотонные последовательности.
- •4.2.8. Число е.
- •4.2.9. Предельный переход в неравенствах.
- •Следствие 1.
- •4.2.10. Подпоследовательности числовых последовательностей.
- •4.2.11. Предельные точки последовательности.
- •4.3. Понятие функции. Предел функции. Непрерывность.
- •4.3.1. Определение функции. Определение 1.
- •4.3.2. Способы задания функций.
- •4.3.3. Монотонные функции.
- •4.3.4. Сложная функция.
- •4.3.5. Обратная функция.
- •4.3.8. Односторонние пределы.
- •4.3.9. Пределы на бесконечности.
4.2.5. Основные свойства сходящихся последовательностей.
Теорема 1. Сходящаяся последовательность имеет только один предел
Теорема 2. Сходящаяся последовательность ограничена
Замечание. Обратная
теорема не имеет места, ибо ограниченная
последовательность, вообще говоря,
может и не быть сходящейся. Так, например,
xn=1+(-1)n=0,
2, 0, 2, 0, 2, . . . ограниченна, но не является
сходящейся. Действительно, если бы
xnс
и
,
то xn
-a
и xn
+1 - а,
тогда и (xn
-a)- (xn
+1 - а)
(теорема 1,2,3).
Но (xn -a)- (xn +1 - а)=xn - xn +1 не является бесконечно малой, т.к.
xn - xn +1 = 2 для nN.
4.2.6. Арифметические свойства сходящихся последовательностей.
Теорема 1. Если последовательности xn и yn сходятся, то сумма (разность), произведение и частное этих последовательностей (частное при условии, что предел последовательности yn0) есть сходящиеся последовательности, пределы которых соответственно равны: сумме (разности), произведению и частному пределов этих последовательностей
4.2.7. Монотонные последовательности.
Определение 1. Последовательность xn называется невозрастающей (неубывающей) последовательностью, если каждый последующий член этой последовательности не больше (не меньше) предыдущего, т.е. если для nN справедливо неравенство xn xn +1 (xn xn +1). Такие последовательности называются монотонными последовательностями.
Определение 2. Если для всех номеров n элементы последовательности xn удовлетворяют неравенству xn > xn +1 (xn < xn +1), то такая последовательность называется убывающей (возрастающей). Убывающие и возрастающие последовательности называются строго монотонными.
Замечание. Отметим, что неубывающие и невозрастающие последовательности ограничены сверху и снизу соответственно своими первыми элементами. Поэтому неубывающая (невозрастающая) последовательность будет ограничена с двух сторон, если она ограничена сверху (снизу).
Введем следующие обозначения:
xn - невозрастающая последовательность xn,
xn - неубывающая последовательность xn,
xn - возрастающая последовательностьxn,
xn - убывающая последовательность xn.
Пример 1. Последовательность n,n=1,1,2,2, . . .n,n, . . . неубывающая монотонная. Снизу она ограничена первым элементом - “1”, а сверху не ограничена.
Пример 2. Последовательность
возрастающая.
Снизу эта последовательность ограничена
своим первым элементом
,
а сверху , например, своим пределом-
единицей, т.е. эта последовательность
ограничена.
Теперь докажем основную теорему о сходимости монотонной последовательности.
Теорема. Если неубывающая (невозрастающая) последовательность ограничена сверху (снизу), то она сходится.
[ ({xn
})(
xn)]{xn
}
c,
[ ({xn
})(
xn)]{xn
}
c.
В силу замечания, сформулированного выше, неубывающие (невозрастающие), ограниченные сверху (снизу) последовательности являются ограниченными с обеих сторон. Поэтому последнюю теорему можно сформулировать так:
.
Замечание 1. Условие ограниченности монотонной последовательности есть необходимое и достаточное условие ее сходимости.
В самом деле, если монотонная последовательность ограничена, то в силу доказанной теоремы она сходится.
Если же монотонная последовательность (да и, вообще, любая последовательность) сходится, то она ограничена (см. теорему 2).
Замечание 2. Если
последовательность сходится, то она
может и не быть монотонной. Так,
последовательность
сходится
и имеет пределом “0”. Однако эта
последовательность не является
монотонной, т.к. знаки элементов этой
последовательности чередуются.