
- •Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 1. Векторная алгебра.
- •1.1. Понятие вектора и линейные операции над векторами.
- •1.1.1. Понятие вектора.
- •1.1.2. Линейные операции над векторами.
- •Свойства сложения векторов:
- •1.1.3. Понятие линейной зависимости векторов.
- •1.1.4. Линейные комбинации двух векторов.
- •Доказательство.
- •1.1.5. Линейные комбинации трех векторов.
- •Доказательство.
- •1.1.6. Линейная зависимость четырех векторов.
- •1.1.7. Понятие базиса. Аффинные координаты.
- •1.1.8. Проекция вектора на ось.
- •1.1.9. Декартова прямоугольная система координат в пространстве. (дпск)
- •1.2. Скалярное произведение двух векторов.
- •1.2.1. Определение скалярного произведения (сп).
- •1.2.2. Геометрические свойства сп.
- •Доказательство.
- •1.2.3. Алгебраические свойства сп.
- •1.2.4. Выражение скалярного произведения (сп) в декартовых прямоугольных координатах (дпк).
- •1.3. Векторное произведение двух векторов.
- •1.3.1. Правые и левые тройки векторов и системы координат.
- •1.3.2. Векторное произведение двух векторов (вп).
- •1.3.3. Геометрические свойства вп.
- •1.3.4. Алгебраические свойства векторного произведения (вп).
- •1.3.5. Понятие матрицы и определителя второго и третьего порядка.
- •1.3.6. Выражение векторного произведения (вп) в декартовых прямоугольных координатах (дпк).
- •1.3.7. Смешанное произведение трех векторов.
- •1.3.8. Выражение смешанного произведения в декартовых координатах.
- •1.4. Уравнение линии на плоскости.
- •1.4.1.Параметрическое представление линии.
- •1.4.2.Уравнение линии в полярных координатах.
- •1.4.3. Пересечение двух линий.
- •1.4.4. Уравнение поверхности и уравнение линии в пространстве.
- •1.5. Различные виды уравнений прямой на плоскости.
- •1.5.1. Общее уравнение прямой.
- •1.5.2. Уравнение прямой с угловым коэффициентом.
- •1.5.3. Уравнение прямой в отрезках.
- •1.5.4. Каноническое уравнение прямой.
- •1.5.5. Параметрические уравнения прямой.
- •1.5.6. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых.
- •1.5.7. Нормированное уравнение прямой. Отклонение точки от прямой.
- •1.5.8. Приведение общего уравнения прямой к нормированному виду.
- •Тема 2. Геометрия на плоскости и в пространстве. Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 2. Кривые второго порядка.
- •2.1. Эллипс.
- •2.1.1. Определение эллипса и вывод его канонического уравнения.
- •2.1.2. Исследование формы эллипса.
- •2.1.3. Эксцентриситет и фокальные радиусы эллипса.
- •2.2. Гипербола.
- •2.2.1. Определение гиперболы и вывод ее канонического уравнения.
- •2.2.2. Исследование формы гиперболы.
- •Асимптоты гиперболы
- •Равнобочная гипербола
- •Сопряженная гипербола
- •2.2.3. Эксцентриситет и фокальные радиусы гиперболы.
- •Фокальные радиусы
- •2.3. Парабола.
- •2.3.1. Определение параболы и ее уравнение.
- •2.3.2. Исследование формы параболы.
- •2.4. Общее свойство кривых второго порядка - эллипса, гиперболы и параболы.
- •2.4.1. Директриса эллипса гиперболы и параболы.
- •2.4.2. Полярное уравнение кривой второго порядка.
- •Тема 3. Вещественные и комплексные числа. Общие сведения
- •Краткое содержание
- •Практикум
- •3.1. Плоскость как поверхность первого порядка.
- •3.2. Неполные уравнения плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •3.5. Уравнение прямой в пространстве.
- •3.6. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой.
- •3.7. Некоторые дополнительные предложения и примеры.
- •Тема 4. Числовые последовательности. Общие сведения
- •Прямое произведение двух множеств.
- •4.1.2.Вещественные числа и их изображение на числовой оси. Основные свойства рациональных чисел.
- •Измерение отрезков числовой оси.
- •4.1.3. Ограниченные множества вещественных чисел.
- •Теорема 1.
- •4.1.4. Некоторые конкретные множества вещественных чисел.
- •4.2. Теория последовательностей.
- •4.2.1. Понятие числовой последовательности.
- •4.2.2. Бесконечно большие и бесконечно малые последовательности.
- •Примеры.
- •4.2.3. Основные теоремы о бесконечно малых последовательностях.
- •4.2.4. Сходящиеся последовательности. Основные определения.
- •Определение 2.
- •4.2.5. Основные свойства сходящихся последовательностей.
- •4.2.6. Арифметические свойства сходящихся последовательностей.
- •4.2.7. Монотонные последовательности.
- •4.2.8. Число е.
- •4.2.9. Предельный переход в неравенствах.
- •Следствие 1.
- •4.2.10. Подпоследовательности числовых последовательностей.
- •4.2.11. Предельные точки последовательности.
- •4.3. Понятие функции. Предел функции. Непрерывность.
- •4.3.1. Определение функции. Определение 1.
- •4.3.2. Способы задания функций.
- •4.3.3. Монотонные функции.
- •4.3.4. Сложная функция.
- •4.3.5. Обратная функция.
- •4.3.8. Односторонние пределы.
- •4.3.9. Пределы на бесконечности.
4.1.3. Ограниченные множества вещественных чисел.
Рассмотрим произвольное множество вещественных чисел, которое будем обозначать символом x. Будем предполагать, что множество x содержит хотя бы одно число (непустое множество). Обозначение: x.
Определение 1. Множество вещественных чисел x называется ограниченным сверху (снизу), если существует такое вещественное число М (число m), что каждый элемент x множества удовлетворяет неравенству x М. (x m).
Класс ограниченных
сверху (снизу) множеств вещественных
чисел будем обозначать символом
,
так что запись
означает,
что множество вещественных чисел x
является ограниченным сверху (снизу).
На языке алгебры логики данные определения формулируются следующим образом:
Числа М и m называются,
соответственно, верхней гранью (нижней
гранью) множестваx.
Замечание. Если вещественное число М является верхней гранью множества x, то и любое вещественное число М1, большее М, также является верхней гранью этого множества. Отсюда вытекает, что любое ограниченное сверху множество x имеет бесконечно много верхних граней.
Аналогичные выводы можно сделать и в отношении нижних граней ограниченного снизу множества x.
Пример 1. Множество всех целых отрицательных чисел -1,-2,-3,... ограничено сверху. В качестве верхней грани этого множества можно взять любое вещественное число М, удовлетворяющее неравенству М-1.
Пример 2. Множество всех положительных вещественных чисел ограничено снизу. В качестве нижней грани этого множества можно взять любое неположительное вещественное число.
Определение 2.
Точной верхней гранью ограниченного
сверху множества x
называется наименьшая из всех верхних
граней этого множества. Точная верхняя
грань x
обозначается символом
(sup
- первые три буквы латинского слова
supremum (“супремум”), которое переводится
как “наивысшее”).
Наибольшая из всех
нижних граней ограниченного снизу
множества x
называется точной нижней гранью этого
множества и обозначается символом
(от
латинского слова infimum
(“инфимум”), которое переводится как
“наинизшее”).
Определение 2 формулируют чаще и по-другому:
Число
(число
)
называется точной верхней (точной
нижней) гранью ограниченного сверху
(снизу) множества x,
если выполнены следующие два требования:
-
каждый элемент xx удовлетворяет неравенству
;
-
каково бы ни было вещественное число x1 меньшее
(большее
), найдется хотя бы один элемент
, удовлетворяющий неравенству
.
В этом определении
требование 1 означает, что число
(число
)
является одной из верхних (нижних)
граней, а требование 2 показывает, что
эта грань является наименьшей (наибольшей)
и уменьшена (увеличена) быть не может.
Пример 3. У множества всех целых отрицательных чисел -1,-2,-3,... существует точная верхняя грань x= -1, которая принадлежит этому множеству (т.е. является наименьшим элементом этого множества).
У множества всех положительных вещественных чисел существует точная нижняя грань- число 0, причем это число не принадлежит указанному множеству.
Имеет место следующая теорема.