- •Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 1. Векторная алгебра.
- •1.1. Понятие вектора и линейные операции над векторами.
- •1.1.1. Понятие вектора.
- •1.1.2. Линейные операции над векторами.
- •Свойства сложения векторов:
- •1.1.3. Понятие линейной зависимости векторов.
- •1.1.4. Линейные комбинации двух векторов.
- •Доказательство.
- •1.1.5. Линейные комбинации трех векторов.
- •Доказательство.
- •1.1.6. Линейная зависимость четырех векторов.
- •1.1.7. Понятие базиса. Аффинные координаты.
- •1.1.8. Проекция вектора на ось.
- •1.1.9. Декартова прямоугольная система координат в пространстве. (дпск)
- •1.2. Скалярное произведение двух векторов.
- •1.2.1. Определение скалярного произведения (сп).
- •1.2.2. Геометрические свойства сп.
- •Доказательство.
- •1.2.3. Алгебраические свойства сп.
- •1.2.4. Выражение скалярного произведения (сп) в декартовых прямоугольных координатах (дпк).
- •1.3. Векторное произведение двух векторов.
- •1.3.1. Правые и левые тройки векторов и системы координат.
- •1.3.2. Векторное произведение двух векторов (вп).
- •1.3.3. Геометрические свойства вп.
- •1.3.4. Алгебраические свойства векторного произведения (вп).
- •1.3.5. Понятие матрицы и определителя второго и третьего порядка.
- •1.3.6. Выражение векторного произведения (вп) в декартовых прямоугольных координатах (дпк).
- •1.3.7. Смешанное произведение трех векторов.
- •1.3.8. Выражение смешанного произведения в декартовых координатах.
- •1.4. Уравнение линии на плоскости.
- •1.4.1.Параметрическое представление линии.
- •1.4.2.Уравнение линии в полярных координатах.
- •1.4.3. Пересечение двух линий.
- •1.4.4. Уравнение поверхности и уравнение линии в пространстве.
- •1.5. Различные виды уравнений прямой на плоскости.
- •1.5.1. Общее уравнение прямой.
- •1.5.2. Уравнение прямой с угловым коэффициентом.
- •1.5.3. Уравнение прямой в отрезках.
- •1.5.4. Каноническое уравнение прямой.
- •1.5.5. Параметрические уравнения прямой.
- •1.5.6. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых.
- •1.5.7. Нормированное уравнение прямой. Отклонение точки от прямой.
- •1.5.8. Приведение общего уравнения прямой к нормированному виду.
- •Тема 2. Геометрия на плоскости и в пространстве. Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 2. Кривые второго порядка.
- •2.1. Эллипс.
- •2.1.1. Определение эллипса и вывод его канонического уравнения.
- •2.1.2. Исследование формы эллипса.
- •2.1.3. Эксцентриситет и фокальные радиусы эллипса.
- •2.2. Гипербола.
- •2.2.1. Определение гиперболы и вывод ее канонического уравнения.
- •2.2.2. Исследование формы гиперболы.
- •Асимптоты гиперболы
- •Равнобочная гипербола
- •Сопряженная гипербола
- •2.2.3. Эксцентриситет и фокальные радиусы гиперболы.
- •Фокальные радиусы
- •2.3. Парабола.
- •2.3.1. Определение параболы и ее уравнение.
- •2.3.2. Исследование формы параболы.
- •2.4. Общее свойство кривых второго порядка - эллипса, гиперболы и параболы.
- •2.4.1. Директриса эллипса гиперболы и параболы.
- •2.4.2. Полярное уравнение кривой второго порядка.
- •Тема 3. Вещественные и комплексные числа. Общие сведения
- •Краткое содержание
- •Практикум
- •3.1. Плоскость как поверхность первого порядка.
- •3.2. Неполные уравнения плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •3.5. Уравнение прямой в пространстве.
- •3.6. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой.
- •3.7. Некоторые дополнительные предложения и примеры.
- •Тема 4. Числовые последовательности. Общие сведения
- •Прямое произведение двух множеств.
- •4.1.2.Вещественные числа и их изображение на числовой оси. Основные свойства рациональных чисел.
- •Измерение отрезков числовой оси.
- •4.1.3. Ограниченные множества вещественных чисел.
- •Теорема 1.
- •4.1.4. Некоторые конкретные множества вещественных чисел.
- •4.2. Теория последовательностей.
- •4.2.1. Понятие числовой последовательности.
- •4.2.2. Бесконечно большие и бесконечно малые последовательности.
- •Примеры.
- •4.2.3. Основные теоремы о бесконечно малых последовательностях.
- •4.2.4. Сходящиеся последовательности. Основные определения.
- •Определение 2.
- •4.2.5. Основные свойства сходящихся последовательностей.
- •4.2.6. Арифметические свойства сходящихся последовательностей.
- •4.2.7. Монотонные последовательности.
- •4.2.8. Число е.
- •4.2.9. Предельный переход в неравенствах.
- •Следствие 1.
- •4.2.10. Подпоследовательности числовых последовательностей.
- •4.2.11. Предельные точки последовательности.
- •4.3. Понятие функции. Предел функции. Непрерывность.
- •4.3.1. Определение функции. Определение 1.
- •4.3.2. Способы задания функций.
- •4.3.3. Монотонные функции.
- •4.3.4. Сложная функция.
- •4.3.5. Обратная функция.
- •4.3.8. Односторонние пределы.
- •4.3.9. Пределы на бесконечности.
Практикум
Решить задачи 1 – 139; 450 – 535 из «Сборника задач по Высшей математике» Минорского В.П.
Тема 2. Кривые второго порядка.
Будем рассматривать линии, уравнения которых в декартовой системе координат являются алгебраическими уравнениями второй степени, то есть будем рассматривать алгебраические кривые второго порядка. Будут рассмотрены три вида линий второго порядка: эллипсы, гиперболы и параболы. Основной целью является ознакомление с важнейшими геометрическими свойствами указанных линий.
2.1. Эллипс.
2.1.1. Определение эллипса и вывод его канонического уравнения.
Эллипсом называется геометрическое место точек на плоскости, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина.
|
Рис.1 |
Для вывода уравнения эллипса выберем систему координат XOY так, чтобы фокусы эллипса F1 и F2 лежали на оси абсцисс, а начало координат делило бы расстояние между фокусами пополам (Рис.1). Обозначим F1F2=2c. Тогда координаты фокуса F1 будут (с;0), а координаты фокуса F2 будут (-с;0). |
Возьмем произвольную точку М(x,y), лежащую на эллипсе. Соединим точку М с фокусами F1 и F2. Длины отрезков MF1 и MF2 обозначим соответственно через r1 и r2: МF1=r1; MF2=r2. Числа r1 и r2 называются фокальными радиусами точки М эллипса. Учитывая, что сумма r1 и r2 есть величина постоянная (это следует из определения эллипса), обозначим: r1+r2=2a; отсюда следует 2а>2c или a>c. В противном случае либо не существует точек, удовлетворяющих поставленным требованиям, либо совокупность этих точек сводится к отрезку F1F2.
На основании определения эллипса как геометрического места точек, можно утверждать, что для всех точек эллипса, и только для них, должно выполняться равенство:
r1+r2=2a. (1)
Определим r1 и r2 по формулам расстояния между двумя точками:
.
(2)
.
(3)
Поставляя найденные значения r1 и r2 в уравнение (1), получим:
.
(4)
Уравнение (4) является уравнением эллипса. Однако полученная форма уравнения является неудобной для пользования, поэтому обычно уравнение эллипса дается в ином виде.
Преобразуем уравнение (4). Пусть М(x,y) - точка эллипса, то есть равенство (4) имеет место. Перенесем первый радикал в правую часть и затем возведем обе части в квадрат:
(5)
или
![]()
выделим отсюда оставшийся радикал:
(6)
Возведя обе части последнего равенства в квадрат, получим:
,
(7)
откуда
.
(8)
Так как по условию a>c, то a2 - c2>0. Обозначим разность a2 - c2, как величину положительную, через b2= a2 - c2. Очевидно, что
b2 < a2.
Подставляя b2= a2 - c2 в равенство (8), получим:
b2x2 + a2y2 = a2b2,
и, разделив последнее равенство на a2b2, окончательно получим:
.
(9)
Пусть теперь x и y - любые действительные числа. Рассмотрим уравнение (9). По доказанному, всякая пара чисел x, y, удовлетворяющая уравнению (4), удовлетворяет и уравнению (9). Можно доказать, что и наобаро, всякая пара чисел х, у, удовлетворяющая уравнению (9) удовлетворяет уравнению (4). Произведя предыдущие выкладки в обратном порядке, мы из равенства (9) получим сначала равенство (8), затем равенство (7), которое сейчас запишем в виде:
a2
((x
- c)2
+ y2
= (a2
- cx)2.
Извлекая корень из обеих частей этого равенства, получим
.
(10)
Заметим теперь, что в силу равенства (9) должно быть |x| a. Так как |x| a и c < a, то |cx| < a2, следовательно, число a2 - cx положительно. Поэтому в правой части равенства (10) необходимо взять знак плюс. Так мы приходим к равенству (6), после чего получим равенство (5); последнее мы напишем в виде:
![]()
Отсюда
(11)
Исследуем величину
(x - c)2 + y2 = x2 - 2cx + c2 + y2 (12)
В силу равенства (9) имеем x2 a2. Далее |cx| < a2, cледовательно, число -2cx по абсолютному значению меньше 2a2. Наконец, также из равенства (9) заключаем, что y2 b2, то есть y2 a2 - c2 или с2 + y2 a2. В силу этих неравенств вся сумма в правой части (12) меньше 4а2, значит, корень из этой суммы меньше 2а. Поэтому величина, стоящая внутри скобок в правой части (11), положительна, следовательно, в равенстве (11) перед скобками нужно брать знак плюс. Таким образом мы получаем:
,
откуда сразу следует равенство (4).
Итак, уравнение (4) выводится из уравнения (9), как и уравнение (9) выводится из уравнения (4). Тем самым доказано, что уравнение (9) есть уравнение данного эллипса, так как оно эквивалентно уравнению (4).
Уравнение (9) называется каноническим уравнением эллипса, это уравнение второй степени; таким образом, эллипс есть линия второго порядка.

