
- •Глава 7 – “Движение в пористой среде” отражает четко границы приме-
- •Раздел 1. Физические свойства жидкости, газов
- •Глава 1. Основные физические свойства жидкости.
- •1.2. Понятие о жидкости
- •1.3. Плотность, удельный объем, удельный вес, сжимаемость, температурное расширение, поверхностное натяжение жидкости
- •1.4. Вязкость, закон вязкости трения
- •1.5. Приборы для измерения плотности и вязкости
- •Тест – тренинг - контроль 1-1
- •Раздел 2. Гидростатика.
- •Методические указания
- •Глава 2. Законы гидростатики и их практическое
- •2.2. Основное уравнение гидростатики
- •2.3. Гидростатическое давление, его свойства
- •2.4. Центр давления
- •2.5. Давление жидкости на плоскую стенку
- •2.6. Давление жидкости на криволинейные поверхности
- •2.7. Гидростатический парадокс
- •1.3. Давление в покоящейся жидкости
- •1.4. Сила статического давления жидкости на плоскую стенку
- •1.5. Сила статического давления жидкости на криволинейные стенки. Закон Архимеда
- •1.6. Относительный покой жидкости
- •1.6.1. Прямолинейное равноускоренное движение сосуда
- •2.8. Эпюры гидростатического давления
- •2.9. Закон Архимеда
- •2.10. Приборы для измерения давления жидкостей и газов.
- •2.11. Простые гидравлические машины и устройства
- •2.12. Принцип действия гидравлических машин
- •Тест – тренинг - контроль 2-1
- •Раздел 3. Гидродинамика.
- •Методические указания
- •Глава 3. Динамика жидких и газовых сред
- •3.4. Графическая иллюстрация уравнения Бернулли
- •3.5. Алгоритм решения задач по применению уравнения д.Бернулли
- •3.6. Измерение расхода и скорости жидкости
- •3.7. Расходомеры, применяемые в промышленности
- •3.8. Центробежный насос
- •3.9. Достоинства и недостатки ц.Н.
- •3.10. Насосная установка
- •Тест – тренинг - контроль 3-1
- •3.11. Гидравлические сопротивления
- •Методические указания
- •3.12. Число Рейнольдса, режим движения
- •3.13. Шероховатость стенок труб
- •3.14. График Никурадзе
- •3.15. Определение потерь напора в трубопроводах
- •3.16. Влияние различных факторов на коэффициент λ
- •3.17. Потери напора в трубах некруглого сечения
- •3.18. Местное сопротивление
- •3.20. Коэффициенты местных сопротивлений
- •3.21. Алгоритм решения задач по определению суммарных потерь напора
- •3.22. Сопротивление при обтекании тел
- •Тест – тренинг - контроль 3-2
- •Глава 4. Динамика движения жидкости в
- •Методические указания
- •4.1. Классификация трубопроводов
- •4.3. Основные задачи при расчете трубопроводов
- •7. Гидравлический расчёт сложных трубопроводов
- •4.4. Кавитация
- •4.5. Сифонные трубопроводы
- •4.7. Меры борьбы гидравлического удара
- •4.8. Полезное использование гидроудара в нгп
- •4.9. Расчет напорных нефтепроводов
- •Тест – тренинг - контроль 4 -1
- •Глава 5. Истечение жидкости из отверстий и насадок
- •Методические указания
- •5.1. Истечение жидкости из отверстий в тонкой стенке при постоянном давлении
- •8. Истечения жидкости через отверстия и насадки
- •5.2. Истечение жидкости через насадки
- •5.3. Гидравлические струи жидкости. Структура гидравлической струи. Дальность полета струй
- •5.4. Давление струи на твердую преграду
- •Тест – тренинг - контроль 5-1
- •Глава 6. Газодинамика.
- •Методические указания
- •6.1. Понятия: газовая динамика; закономерности течения газов (уравнение неразрывности, уравнение Бернулли); истечение газа из неограниченного объема; весовой расход
- •Тест – тренинг – контроль 6 – 1
- •Глава 7. Движение жидкости в пористой среде
- •Методические указания
- •7.1. Основные понятия и определения фильтрации
- •7.2. Основной закон фильтрации и границы его применения
- •7.3. Закон Дарси
- •7.4. Физический смысл к (коэффициента фильтрации)
- •7.5. Приток грунтовой воды к сооружениям
- •7.6. Простейшие случаи установившейся напорной фильтрации несжимаемой жидкости
- •Тест – тренинг - контроль 7-1
- •Раздел 4. Неньютоновские жидкости
- •Методические указания
- •Глава 8. Режимы движения вязкопластичной
- •8.2. Вязкопластичные жидкости и их свойства
- •Режимы движения вязкопластичной жидкости
- •8.4 Роль бурового раствора в б.Н.Г.С. Условия выноса разбуренной породы на поверхность
- •8.5 Турбобур
- •Раздел 5. Основы термодинамики
- •Глава 9. Основные газовые законы. Теплоемкость
- •Методическое указание
- •9.1. Основные определения и законы идеальных газов.
- •Закон Гей-Люссака
- •Закон Шарля
- •Уравнение состояния идеальных газов.
- •Закон Авогадро
- •Уравнение Менделеева
- •Тест - тренинг - контроль 9-1
- •4. Изотермический
- •9.2. Газовые смеси. Теплоемкость смеси
- •9.3. Понятие газовой смеси. Парциальное давление. Основные характеристики смеси
- •9.4. Теплоемкость: виды, истинная и средняя. Теплоемкость
- •Контрольные вопросы:
- •Тест – тренинг - контроль 9 -2
- •9.5. Внутренняя энергия. Энтальпия. Принцип эквивалентности Методические указания
- •Энтальпия, как функция температуры
- •Тест – тренинг - контроль 9-3
- •Глава 10. Термодинамические процессы изменения состояния
- •Методическое указание
- •10.1. Классификация термодинамических процессов.
- •3. Изотермический процесс.
- •4. Адиабатный процесс.
- •5. Политропный процесс
- •Тест – тренинг - контроль 10-1
- •10.2. Второе начало (закон) термодинамики
- •Математическая запись закона
- •Энтропия
- •Контрольные вопросы:
- •Глава 11. Теоретические циклы паросиловых и холодильных установок двигателей внутреннего сгорания
- •Методические указания
- •11.1 Простейшая схема п.С.У.
- •11.2. Цикл Ренкина. Пути повышения экономичности п.С.У.
- •11.3. Цикл компрессорной холодильной установки
- •11.4. Теоретические циклы д.В.С. Циклы поршневых двигателей внутреннего сгорания
- •4.) Цикл со смешанным подводом количества тепла (Цикл Тринклер)
- •11.5. Циклы газотурбинных установок. Цикл гту
- •Тест – тренинг - контроль 11-1
- •Тест – тренинг - контроль 11-2
- •Глава 12. Термодинамические процессы компрессорных машин
- •Методические указания
- •12.1. Классификация компрессоров
- •12.2. Основные процессы работы одноступенчатого поршневого компрессора
- •12.3. Основные характеристики работы поршневого компрессора
- •12.4. Двухступенчатый компрессор
- •12.5 Достоинства и недостатки компрессоров
- •Контрольные вопросы:
- •Тест – тренинг - контроль 12-1
- •Глава 13. Водяной пар. Свойства водяного пара. Дросселирование газов и паров.
- •Методические указания
- •13.1. Процесс парообразования. Виды пара:
- •Тест – тренинг - контроль № 13 – 1
- •13.2. Истечение газов, дроссель – эффект.
- •Методическое указание
- •Раздел 6. Теплообмен.
- •Глава 14. Законы теплообмена.
- •14.1. Виды теплообмена. Формы передачи тепла.
- •14. 2. Передача теплоты теплопроводностью через плоскую однослойную и многослойную стенки
- •14. 3. Основной закон конвективного теплообмена
- •14.4. Теплообмен излучением между твердыми телами
- •14. 5. Теплопередача через плоскую и криволинейную однослойную и многослойную стенки
- •14.6.Теплопередача при переменных температурах (расчет теплообменных аппаратов)
- •Контрольные вопросы:
- •Глава 15. Топливо, продукты сгорания,
- •15.1. Топливо. Продукты сгорания.
- •15.2. Понятие о котельной установке, котельном агрегате и
- •15.3. Основные параметры работы парового котельного агрегата
- •15.4. Основные теории массопередачи
- •15. 5. Понятия о равновесии между фазами
- •15.6. Основное уравнение массопередачи
- •15.7. Основные законы термодинамики равновесных систем
- •Раздел 7. Массообмен
- •Глава 16. Основные законы равновесных систем и
- •16.1. Основные теории массопередачисистемы
- •16. 2. Абсорбция и десорбция
- •1. Сущность процесса абсорбции и десорбции
- •2. Сущность процесса экстракции
- •3. Сущность процесса адсорбции
- •2. Характеристики адсорбентов
- •Контрольные вопросы:
- •Тест – тренинг - контроль 16 – 1
2.4. Центр давления
Центр давления ― точка пересечения равнодействующих сил с поверх-
ностью, воспринимающей давление.
lD = lc + I / (s ∙ lc) (2.6)
Центр давления всегда расположен ниже центра тяжести на величину
отношения момента инерции iо к статическому моменту.
Определим точку D ее приложения (рис. 2.4).
Рис. 2.4
Эта точка лежит в плоскости стенки, т.е. в плоскости координатных осей
x’0z’, поэтому необходимо определить только две ее координаты: x’d и z’d.
Для определения координаты z’d воспользуемся теоремой Вариньона,
согласно которой момент равнодействующей системы параллельных сил отно-
сительно некоторой оси равен сумме моментов сил ее составляющих относит-
тельно той же оси. В качестве такой оси выберем ось 0x’, тогда уравнение
моментов запишется в следующем виде:
М (Р) 0x’ = Σ М (dР)0x’. (2.7)
Момент силы Р
М (Р)0x’ = Pz’d. (2.8)
По теореме о моментах инерции относительно параллельных осей можем записать:
J0x = Jo + z’c²ω, (2.9)
где Jо ― момент инерции площади ω относительно оси, проходящей через
центр тяжести площади ω и параллельной оси 0x’; z’c ― расстояние от центра
тяжести площади ω до той же оси 0x’.
Сделав соответствующие подстановки в уравнение (2.8), получим:
z’d
=
(2.10)
В формуле
(2.9)
> 0, так как Jo
> 0 и z’cω
> 0. Следовательно,
z’d > z’c и hd > hс, т.е. центр давления (точка D) лежит на большей глубине,
чем центр тяжести (точка С) данной площади ω.
2.5. Давление жидкости на плоскую стенку
Предположим, что плоская стенка, ограждающая некоторую массу
неподвижной жидкости, наклонена к горизонту под углом α. Определим силу Р,
с которой жидкость действует на выбранную в пределах этой стенки площадь
ω (рис. 2.5).
Рис. 2.5.
На каждую точку этой площади действует гидростатическое давление
р = dP/dω, (2.11)
где dP – элементарная сила; dω – элементарная площадка.
Следовательно, сила, с которой жидкость действует на элементарную
площадку dω, будет равна dP = pdω. Эта сила направлена по нормали к плоскости
стенки.
Искомую силу Р, с которой покоящаяся жидкость действует на площадь
ω, можно найти как равнодействующую системы параллельных сил dP, равную
их алгебраической сумме:
Р =
.
(2.12)
Статический момент площади относительно любой оси, лежащей в той
же плоскости, равен произведению этой площади на расстояние от центра ее
тяжести до оси моментов.
Таким образом,
(2.13)
где z’c ― расстояние от точки С (центра тяжести площади ω) до оси 0x’ (оси
моментов).
Р = роω + γsin α z’cω. (2.14)
Первое слагаемое представляет собой силу атмосферного давления на
свободную поверхность, передаваемого жидкостью по закону Паскаля, а второе ―
силу давления, оказываемого на стенку уже самой жидкостью.
Произведение z’cω sinα равно глубине hс погружения центра тяжести
площади ω относительно уровня свободной поверхности, поэтому
Р = роω + ρghcω. (2.15)