
- •Глава 7 – “Движение в пористой среде” отражает четко границы приме-
- •Раздел 1. Физические свойства жидкости, газов
- •Глава 1. Основные физические свойства жидкости.
- •1.2. Понятие о жидкости
- •1.3. Плотность, удельный объем, удельный вес, сжимаемость, температурное расширение, поверхностное натяжение жидкости
- •1.4. Вязкость, закон вязкости трения
- •1.5. Приборы для измерения плотности и вязкости
- •Тест – тренинг - контроль 1-1
- •Раздел 2. Гидростатика.
- •Методические указания
- •Глава 2. Законы гидростатики и их практическое
- •2.2. Основное уравнение гидростатики
- •2.3. Гидростатическое давление, его свойства
- •2.4. Центр давления
- •2.5. Давление жидкости на плоскую стенку
- •2.6. Давление жидкости на криволинейные поверхности
- •2.7. Гидростатический парадокс
- •1.3. Давление в покоящейся жидкости
- •1.4. Сила статического давления жидкости на плоскую стенку
- •1.5. Сила статического давления жидкости на криволинейные стенки. Закон Архимеда
- •1.6. Относительный покой жидкости
- •1.6.1. Прямолинейное равноускоренное движение сосуда
- •2.8. Эпюры гидростатического давления
- •2.9. Закон Архимеда
- •2.10. Приборы для измерения давления жидкостей и газов.
- •2.11. Простые гидравлические машины и устройства
- •2.12. Принцип действия гидравлических машин
- •Тест – тренинг - контроль 2-1
- •Раздел 3. Гидродинамика.
- •Методические указания
- •Глава 3. Динамика жидких и газовых сред
- •3.4. Графическая иллюстрация уравнения Бернулли
- •3.5. Алгоритм решения задач по применению уравнения д.Бернулли
- •3.6. Измерение расхода и скорости жидкости
- •3.7. Расходомеры, применяемые в промышленности
- •3.8. Центробежный насос
- •3.9. Достоинства и недостатки ц.Н.
- •3.10. Насосная установка
- •Тест – тренинг - контроль 3-1
- •3.11. Гидравлические сопротивления
- •Методические указания
- •3.12. Число Рейнольдса, режим движения
- •3.13. Шероховатость стенок труб
- •3.14. График Никурадзе
- •3.15. Определение потерь напора в трубопроводах
- •3.16. Влияние различных факторов на коэффициент λ
- •3.17. Потери напора в трубах некруглого сечения
- •3.18. Местное сопротивление
- •3.20. Коэффициенты местных сопротивлений
- •3.21. Алгоритм решения задач по определению суммарных потерь напора
- •3.22. Сопротивление при обтекании тел
- •Тест – тренинг - контроль 3-2
- •Глава 4. Динамика движения жидкости в
- •Методические указания
- •4.1. Классификация трубопроводов
- •4.3. Основные задачи при расчете трубопроводов
- •7. Гидравлический расчёт сложных трубопроводов
- •4.4. Кавитация
- •4.5. Сифонные трубопроводы
- •4.7. Меры борьбы гидравлического удара
- •4.8. Полезное использование гидроудара в нгп
- •4.9. Расчет напорных нефтепроводов
- •Тест – тренинг - контроль 4 -1
- •Глава 5. Истечение жидкости из отверстий и насадок
- •Методические указания
- •5.1. Истечение жидкости из отверстий в тонкой стенке при постоянном давлении
- •8. Истечения жидкости через отверстия и насадки
- •5.2. Истечение жидкости через насадки
- •5.3. Гидравлические струи жидкости. Структура гидравлической струи. Дальность полета струй
- •5.4. Давление струи на твердую преграду
- •Тест – тренинг - контроль 5-1
- •Глава 6. Газодинамика.
- •Методические указания
- •6.1. Понятия: газовая динамика; закономерности течения газов (уравнение неразрывности, уравнение Бернулли); истечение газа из неограниченного объема; весовой расход
- •Тест – тренинг – контроль 6 – 1
- •Глава 7. Движение жидкости в пористой среде
- •Методические указания
- •7.1. Основные понятия и определения фильтрации
- •7.2. Основной закон фильтрации и границы его применения
- •7.3. Закон Дарси
- •7.4. Физический смысл к (коэффициента фильтрации)
- •7.5. Приток грунтовой воды к сооружениям
- •7.6. Простейшие случаи установившейся напорной фильтрации несжимаемой жидкости
- •Тест – тренинг - контроль 7-1
- •Раздел 4. Неньютоновские жидкости
- •Методические указания
- •Глава 8. Режимы движения вязкопластичной
- •8.2. Вязкопластичные жидкости и их свойства
- •Режимы движения вязкопластичной жидкости
- •8.4 Роль бурового раствора в б.Н.Г.С. Условия выноса разбуренной породы на поверхность
- •8.5 Турбобур
- •Раздел 5. Основы термодинамики
- •Глава 9. Основные газовые законы. Теплоемкость
- •Методическое указание
- •9.1. Основные определения и законы идеальных газов.
- •Закон Гей-Люссака
- •Закон Шарля
- •Уравнение состояния идеальных газов.
- •Закон Авогадро
- •Уравнение Менделеева
- •Тест - тренинг - контроль 9-1
- •4. Изотермический
- •9.2. Газовые смеси. Теплоемкость смеси
- •9.3. Понятие газовой смеси. Парциальное давление. Основные характеристики смеси
- •9.4. Теплоемкость: виды, истинная и средняя. Теплоемкость
- •Контрольные вопросы:
- •Тест – тренинг - контроль 9 -2
- •9.5. Внутренняя энергия. Энтальпия. Принцип эквивалентности Методические указания
- •Энтальпия, как функция температуры
- •Тест – тренинг - контроль 9-3
- •Глава 10. Термодинамические процессы изменения состояния
- •Методическое указание
- •10.1. Классификация термодинамических процессов.
- •3. Изотермический процесс.
- •4. Адиабатный процесс.
- •5. Политропный процесс
- •Тест – тренинг - контроль 10-1
- •10.2. Второе начало (закон) термодинамики
- •Математическая запись закона
- •Энтропия
- •Контрольные вопросы:
- •Глава 11. Теоретические циклы паросиловых и холодильных установок двигателей внутреннего сгорания
- •Методические указания
- •11.1 Простейшая схема п.С.У.
- •11.2. Цикл Ренкина. Пути повышения экономичности п.С.У.
- •11.3. Цикл компрессорной холодильной установки
- •11.4. Теоретические циклы д.В.С. Циклы поршневых двигателей внутреннего сгорания
- •4.) Цикл со смешанным подводом количества тепла (Цикл Тринклер)
- •11.5. Циклы газотурбинных установок. Цикл гту
- •Тест – тренинг - контроль 11-1
- •Тест – тренинг - контроль 11-2
- •Глава 12. Термодинамические процессы компрессорных машин
- •Методические указания
- •12.1. Классификация компрессоров
- •12.2. Основные процессы работы одноступенчатого поршневого компрессора
- •12.3. Основные характеристики работы поршневого компрессора
- •12.4. Двухступенчатый компрессор
- •12.5 Достоинства и недостатки компрессоров
- •Контрольные вопросы:
- •Тест – тренинг - контроль 12-1
- •Глава 13. Водяной пар. Свойства водяного пара. Дросселирование газов и паров.
- •Методические указания
- •13.1. Процесс парообразования. Виды пара:
- •Тест – тренинг - контроль № 13 – 1
- •13.2. Истечение газов, дроссель – эффект.
- •Методическое указание
- •Раздел 6. Теплообмен.
- •Глава 14. Законы теплообмена.
- •14.1. Виды теплообмена. Формы передачи тепла.
- •14. 2. Передача теплоты теплопроводностью через плоскую однослойную и многослойную стенки
- •14. 3. Основной закон конвективного теплообмена
- •14.4. Теплообмен излучением между твердыми телами
- •14. 5. Теплопередача через плоскую и криволинейную однослойную и многослойную стенки
- •14.6.Теплопередача при переменных температурах (расчет теплообменных аппаратов)
- •Контрольные вопросы:
- •Глава 15. Топливо, продукты сгорания,
- •15.1. Топливо. Продукты сгорания.
- •15.2. Понятие о котельной установке, котельном агрегате и
- •15.3. Основные параметры работы парового котельного агрегата
- •15.4. Основные теории массопередачи
- •15. 5. Понятия о равновесии между фазами
- •15.6. Основное уравнение массопередачи
- •15.7. Основные законы термодинамики равновесных систем
- •Раздел 7. Массообмен
- •Глава 16. Основные законы равновесных систем и
- •16.1. Основные теории массопередачисистемы
- •16. 2. Абсорбция и десорбция
- •1. Сущность процесса абсорбции и десорбции
- •2. Сущность процесса экстракции
- •3. Сущность процесса адсорбции
- •2. Характеристики адсорбентов
- •Контрольные вопросы:
- •Тест – тренинг - контроль 16 – 1
15.3. Основные параметры работы парового котельного агрегата
Номинальной паропроизводительностью парового котельного агрегата D называется наибольшая масса пара, вырабатываемая котельным агрегатом в единицу времени (секунду, час) с соблюдением заданных параметров при длительной эксплуатации. Качество перегретого пара определяется давлением и температурой, а качество насыщенного пара — давлением и паросодержанием.
Основные номинальные параметры стационарных паровых котлов по ГОСТ 3619—82 находятся в пределах: паропроизводительность от 0,2 до 2500 т/ч при абсолютном давлении 0,9— 25,5 МПа и температуре перегретого пара
225—570 °С.
Паропроизводительность котельного агрегата определяет поверхность нагрева элементов котлоагрегата (котла, водяного экономайзера, пароперегревателя) F.
Поверхностью нагрева котла, водяного экономайзера или пароперегревателя называется поверхность, омываемая с одной стороны горячими продуктами сгорания топлива, а с другой стороны — водой, пароводяной смесью или в пароперегревателе — паром. Площадь поверхности нагрева современных паровых котлов доходит до 2500—5000 м2 и более.
Напряжение площади поверхности нагрева парового котла D/F определяется отношением паропроизводительности котла D к площади поверхности нагрева котла F.
Напряжение площади поверхности нагрева паровых котлов: для локомобильных 20—30 кг/(м2-ч), водотрубных неэкранированных 20—40 кг/(м2-ч) и экранированных 50—90 кг/(м2-ч), прямоточных 100—2000 кг/(м2-ч).
К.п. д. котельного агрегата определяет долю теплоты сгорания топлива, полезно использованной в котельном агрегате для подогрева воды, превращения ее в пар и его перегрева. К. п. д. котлов без экономайзеров составляет 60—75% и для крупных котельных агрегатов с водяными экономайзерами и воздухоподогревателями достигает 80—90%.
15.4. Основные теории массопередачи
Массообменные, или диффузные, процессы связаны с переходом компонентов из одной фазы в другую, в результате чего происходит их разделение.
Массообменные процессы обратимы, т.е. направление переноса компонентов смеси может измеряться в зависимости от свойств разделяемой смеси. Перенос вещества прекращается при достижении состояния равновесия между фазами. К массообменным процессам относятся перегонка, ректификация, абсорбция, экстракция, адсорбция, сушка.
Перегонка – процесс разделения жидких ( газовых, паровых) смесей путем испарения ( конденсация) частей исходной жидкой ( газовой, паровой) смеси. Перегонка реализуется при наличии паров (газового) и жидкой системы.
Ректификация – процесс разделения жидких смесей на отдельные компоненты или их смеси ( фракций) путем взаимодействия потоков паров из жидкости. При ректификации всегда существует две фазы – жидкая и паровая.
Абсорбция – процесс избирательного поглощения компонентов газовой
( паровой) смеси жидким поглотителем – абсорбентом. Таким образом в процессе абсорбции участвуют газовая и жидкая фазы.
Экстракция – процесс избирательного извлечения компонентов из жидкой смеси ( или твердого вещества) другой жидкостью ( избирательным или селективным растворителем). Наиболее часто процесс экстракции осуществляется при взаимодействии двух жидких фаз.
Адсорбция – это процесс избирательного поглощения компонентов газовой, паровой или жидкой смеси твердым поглотителем – адсорбентом.
Сушка – процесс удаления жидкости ( в частности, влаги) из твердых материалов за ее испарения. В этом процессе участвуют пропитанный жидкостью твердый материал и паровой фаз.