
- •Глава 7 – “Движение в пористой среде” отражает четко границы приме-
- •Раздел 1. Физические свойства жидкости, газов
- •Глава 1. Основные физические свойства жидкости.
- •1.2. Понятие о жидкости
- •1.3. Плотность, удельный объем, удельный вес, сжимаемость, температурное расширение, поверхностное натяжение жидкости
- •1.4. Вязкость, закон вязкости трения
- •1.5. Приборы для измерения плотности и вязкости
- •Тест – тренинг - контроль 1-1
- •Раздел 2. Гидростатика.
- •Методические указания
- •Глава 2. Законы гидростатики и их практическое
- •2.2. Основное уравнение гидростатики
- •2.3. Гидростатическое давление, его свойства
- •2.4. Центр давления
- •2.5. Давление жидкости на плоскую стенку
- •2.6. Давление жидкости на криволинейные поверхности
- •2.7. Гидростатический парадокс
- •1.3. Давление в покоящейся жидкости
- •1.4. Сила статического давления жидкости на плоскую стенку
- •1.5. Сила статического давления жидкости на криволинейные стенки. Закон Архимеда
- •1.6. Относительный покой жидкости
- •1.6.1. Прямолинейное равноускоренное движение сосуда
- •2.8. Эпюры гидростатического давления
- •2.9. Закон Архимеда
- •2.10. Приборы для измерения давления жидкостей и газов.
- •2.11. Простые гидравлические машины и устройства
- •2.12. Принцип действия гидравлических машин
- •Тест – тренинг - контроль 2-1
- •Раздел 3. Гидродинамика.
- •Методические указания
- •Глава 3. Динамика жидких и газовых сред
- •3.4. Графическая иллюстрация уравнения Бернулли
- •3.5. Алгоритм решения задач по применению уравнения д.Бернулли
- •3.6. Измерение расхода и скорости жидкости
- •3.7. Расходомеры, применяемые в промышленности
- •3.8. Центробежный насос
- •3.9. Достоинства и недостатки ц.Н.
- •3.10. Насосная установка
- •Тест – тренинг - контроль 3-1
- •3.11. Гидравлические сопротивления
- •Методические указания
- •3.12. Число Рейнольдса, режим движения
- •3.13. Шероховатость стенок труб
- •3.14. График Никурадзе
- •3.15. Определение потерь напора в трубопроводах
- •3.16. Влияние различных факторов на коэффициент λ
- •3.17. Потери напора в трубах некруглого сечения
- •3.18. Местное сопротивление
- •3.20. Коэффициенты местных сопротивлений
- •3.21. Алгоритм решения задач по определению суммарных потерь напора
- •3.22. Сопротивление при обтекании тел
- •Тест – тренинг - контроль 3-2
- •Глава 4. Динамика движения жидкости в
- •Методические указания
- •4.1. Классификация трубопроводов
- •4.3. Основные задачи при расчете трубопроводов
- •7. Гидравлический расчёт сложных трубопроводов
- •4.4. Кавитация
- •4.5. Сифонные трубопроводы
- •4.7. Меры борьбы гидравлического удара
- •4.8. Полезное использование гидроудара в нгп
- •4.9. Расчет напорных нефтепроводов
- •Тест – тренинг - контроль 4 -1
- •Глава 5. Истечение жидкости из отверстий и насадок
- •Методические указания
- •5.1. Истечение жидкости из отверстий в тонкой стенке при постоянном давлении
- •8. Истечения жидкости через отверстия и насадки
- •5.2. Истечение жидкости через насадки
- •5.3. Гидравлические струи жидкости. Структура гидравлической струи. Дальность полета струй
- •5.4. Давление струи на твердую преграду
- •Тест – тренинг - контроль 5-1
- •Глава 6. Газодинамика.
- •Методические указания
- •6.1. Понятия: газовая динамика; закономерности течения газов (уравнение неразрывности, уравнение Бернулли); истечение газа из неограниченного объема; весовой расход
- •Тест – тренинг – контроль 6 – 1
- •Глава 7. Движение жидкости в пористой среде
- •Методические указания
- •7.1. Основные понятия и определения фильтрации
- •7.2. Основной закон фильтрации и границы его применения
- •7.3. Закон Дарси
- •7.4. Физический смысл к (коэффициента фильтрации)
- •7.5. Приток грунтовой воды к сооружениям
- •7.6. Простейшие случаи установившейся напорной фильтрации несжимаемой жидкости
- •Тест – тренинг - контроль 7-1
- •Раздел 4. Неньютоновские жидкости
- •Методические указания
- •Глава 8. Режимы движения вязкопластичной
- •8.2. Вязкопластичные жидкости и их свойства
- •Режимы движения вязкопластичной жидкости
- •8.4 Роль бурового раствора в б.Н.Г.С. Условия выноса разбуренной породы на поверхность
- •8.5 Турбобур
- •Раздел 5. Основы термодинамики
- •Глава 9. Основные газовые законы. Теплоемкость
- •Методическое указание
- •9.1. Основные определения и законы идеальных газов.
- •Закон Гей-Люссака
- •Закон Шарля
- •Уравнение состояния идеальных газов.
- •Закон Авогадро
- •Уравнение Менделеева
- •Тест - тренинг - контроль 9-1
- •4. Изотермический
- •9.2. Газовые смеси. Теплоемкость смеси
- •9.3. Понятие газовой смеси. Парциальное давление. Основные характеристики смеси
- •9.4. Теплоемкость: виды, истинная и средняя. Теплоемкость
- •Контрольные вопросы:
- •Тест – тренинг - контроль 9 -2
- •9.5. Внутренняя энергия. Энтальпия. Принцип эквивалентности Методические указания
- •Энтальпия, как функция температуры
- •Тест – тренинг - контроль 9-3
- •Глава 10. Термодинамические процессы изменения состояния
- •Методическое указание
- •10.1. Классификация термодинамических процессов.
- •3. Изотермический процесс.
- •4. Адиабатный процесс.
- •5. Политропный процесс
- •Тест – тренинг - контроль 10-1
- •10.2. Второе начало (закон) термодинамики
- •Математическая запись закона
- •Энтропия
- •Контрольные вопросы:
- •Глава 11. Теоретические циклы паросиловых и холодильных установок двигателей внутреннего сгорания
- •Методические указания
- •11.1 Простейшая схема п.С.У.
- •11.2. Цикл Ренкина. Пути повышения экономичности п.С.У.
- •11.3. Цикл компрессорной холодильной установки
- •11.4. Теоретические циклы д.В.С. Циклы поршневых двигателей внутреннего сгорания
- •4.) Цикл со смешанным подводом количества тепла (Цикл Тринклер)
- •11.5. Циклы газотурбинных установок. Цикл гту
- •Тест – тренинг - контроль 11-1
- •Тест – тренинг - контроль 11-2
- •Глава 12. Термодинамические процессы компрессорных машин
- •Методические указания
- •12.1. Классификация компрессоров
- •12.2. Основные процессы работы одноступенчатого поршневого компрессора
- •12.3. Основные характеристики работы поршневого компрессора
- •12.4. Двухступенчатый компрессор
- •12.5 Достоинства и недостатки компрессоров
- •Контрольные вопросы:
- •Тест – тренинг - контроль 12-1
- •Глава 13. Водяной пар. Свойства водяного пара. Дросселирование газов и паров.
- •Методические указания
- •13.1. Процесс парообразования. Виды пара:
- •Тест – тренинг - контроль № 13 – 1
- •13.2. Истечение газов, дроссель – эффект.
- •Методическое указание
- •Раздел 6. Теплообмен.
- •Глава 14. Законы теплообмена.
- •14.1. Виды теплообмена. Формы передачи тепла.
- •14. 2. Передача теплоты теплопроводностью через плоскую однослойную и многослойную стенки
- •14. 3. Основной закон конвективного теплообмена
- •14.4. Теплообмен излучением между твердыми телами
- •14. 5. Теплопередача через плоскую и криволинейную однослойную и многослойную стенки
- •14.6.Теплопередача при переменных температурах (расчет теплообменных аппаратов)
- •Контрольные вопросы:
- •Глава 15. Топливо, продукты сгорания,
- •15.1. Топливо. Продукты сгорания.
- •15.2. Понятие о котельной установке, котельном агрегате и
- •15.3. Основные параметры работы парового котельного агрегата
- •15.4. Основные теории массопередачи
- •15. 5. Понятия о равновесии между фазами
- •15.6. Основное уравнение массопередачи
- •15.7. Основные законы термодинамики равновесных систем
- •Раздел 7. Массообмен
- •Глава 16. Основные законы равновесных систем и
- •16.1. Основные теории массопередачисистемы
- •16. 2. Абсорбция и десорбция
- •1. Сущность процесса абсорбции и десорбции
- •2. Сущность процесса экстракции
- •3. Сущность процесса адсорбции
- •2. Характеристики адсорбентов
- •Контрольные вопросы:
- •Тест – тренинг - контроль 16 – 1
Методические указания
Студент четко должен знать критерий для определения режима движения жидкости. Алгоритм определения потерь напора на трение, местные сопротивления и перепад давления на трение. В конце материал темы закреплен методикой решения задач, контрольными вопросами, тестом.
3.12. Число Рейнольдса, режим движения
О.Рейнольдс установил, что основные факторы, определяющие характер
режима, следующие: средняя скорость движения жидкости υ, диаметр трубопровода
d, плотность жидкости ρ, динамическая вязкость жидкости µ и кинематическая вязкость۷.
Для характеристики режима движения жидкости О.Рейнольдсом был введен
безразмерный параметр Re, учитывающий влияние перечисленных выше факторов.
Этот параметр назван числом (или критерием) Рейнольдса:
Re = υdρ/µ (3.36)
Так как отношение /ρ = υ, где υ – кинематическая вязкость жидкости, формулу
(3.36) можно записать иначе:
Re = υd/v. (3.37)
Границы существования того или иного режима движения жидкости
определяются критическим значением числа Рейнольдса:
При Re < Reкр.н возможен только ламинарный, а при Re > Reкр.н ― только
турбулентный режим. При Reкр.н< Re< Reкр.н наблюдается неустойчивое состояние потока.
В настоящее время при расчетах обычно принято исходить только из одного
критического значения числа Рейнольдса (Reкр = 2300), считая, что ламинарный
режим существует при Re < 2300, а турбулентный ― при Re > 2300. При этом
движение жидкости в неустойчивой зоне из рассмотрения исключается.
Различают два режима движения жидкости: ламинарный, при котором жидкость
движется слоями, не перемешиваясь, и турбулентный, при котором частицы
жидкости перемешиваются.
Критерием, определяющим режим движения жидкости, является число Рейнольдса:
Re
=
(3.34)
где υ – средняя скорость потока, м/сек; d – диаметр трубы, м ; ρ – плотность жидкости,
кг/м³; μ – динамическая вязкость, н · сек/м²; ν – кинематическая вязкость, м²/сек.
Для определения режима движения в каналах произвольного сечения в
формулу критерия Рейнольдса вводят гидравлический радиус Rг = d/4, тогда
Re
=
(3.35)
Значение числа Рейнольдса Reкр = 2 300 называют критическим.
В круглых гладких трубах при Re < 2 300 режим движения ламинарный, при
Re > 2300 – турбулентный.
Если движение жидкости установившееся, размеры и форма сечений вдоль потока
не изменяются и, следовательно, средние скорости во всех поперечных сечениях потока
одинаковы, то движение называют равномерным. Если движение жидкости
установившееся, но по длине потока изменяются его поперечное сечение, а
следовательно, и средняя скорость, то движение называют неравномерным. Пример
равномерного движения ― движение жидкости в трубе постоянного диаметра с
постоянным расходом, неравномерного ― движение жидкости в трубе переменного
сечения.