
- •Глава 7 – “Движение в пористой среде” отражает четко границы приме-
- •Раздел 1. Физические свойства жидкости, газов
- •Глава 1. Основные физические свойства жидкости.
- •1.2. Понятие о жидкости
- •1.3. Плотность, удельный объем, удельный вес, сжимаемость, температурное расширение, поверхностное натяжение жидкости
- •1.4. Вязкость, закон вязкости трения
- •1.5. Приборы для измерения плотности и вязкости
- •Тест – тренинг - контроль 1-1
- •Раздел 2. Гидростатика.
- •Методические указания
- •Глава 2. Законы гидростатики и их практическое
- •2.2. Основное уравнение гидростатики
- •2.3. Гидростатическое давление, его свойства
- •2.4. Центр давления
- •2.5. Давление жидкости на плоскую стенку
- •2.6. Давление жидкости на криволинейные поверхности
- •2.7. Гидростатический парадокс
- •1.3. Давление в покоящейся жидкости
- •1.4. Сила статического давления жидкости на плоскую стенку
- •1.5. Сила статического давления жидкости на криволинейные стенки. Закон Архимеда
- •1.6. Относительный покой жидкости
- •1.6.1. Прямолинейное равноускоренное движение сосуда
- •2.8. Эпюры гидростатического давления
- •2.9. Закон Архимеда
- •2.10. Приборы для измерения давления жидкостей и газов.
- •2.11. Простые гидравлические машины и устройства
- •2.12. Принцип действия гидравлических машин
- •Тест – тренинг - контроль 2-1
- •Раздел 3. Гидродинамика.
- •Методические указания
- •Глава 3. Динамика жидких и газовых сред
- •3.4. Графическая иллюстрация уравнения Бернулли
- •3.5. Алгоритм решения задач по применению уравнения д.Бернулли
- •3.6. Измерение расхода и скорости жидкости
- •3.7. Расходомеры, применяемые в промышленности
- •3.8. Центробежный насос
- •3.9. Достоинства и недостатки ц.Н.
- •3.10. Насосная установка
- •Тест – тренинг - контроль 3-1
- •3.11. Гидравлические сопротивления
- •Методические указания
- •3.12. Число Рейнольдса, режим движения
- •3.13. Шероховатость стенок труб
- •3.14. График Никурадзе
- •3.15. Определение потерь напора в трубопроводах
- •3.16. Влияние различных факторов на коэффициент λ
- •3.17. Потери напора в трубах некруглого сечения
- •3.18. Местное сопротивление
- •3.20. Коэффициенты местных сопротивлений
- •3.21. Алгоритм решения задач по определению суммарных потерь напора
- •3.22. Сопротивление при обтекании тел
- •Тест – тренинг - контроль 3-2
- •Глава 4. Динамика движения жидкости в
- •Методические указания
- •4.1. Классификация трубопроводов
- •4.3. Основные задачи при расчете трубопроводов
- •7. Гидравлический расчёт сложных трубопроводов
- •4.4. Кавитация
- •4.5. Сифонные трубопроводы
- •4.7. Меры борьбы гидравлического удара
- •4.8. Полезное использование гидроудара в нгп
- •4.9. Расчет напорных нефтепроводов
- •Тест – тренинг - контроль 4 -1
- •Глава 5. Истечение жидкости из отверстий и насадок
- •Методические указания
- •5.1. Истечение жидкости из отверстий в тонкой стенке при постоянном давлении
- •8. Истечения жидкости через отверстия и насадки
- •5.2. Истечение жидкости через насадки
- •5.3. Гидравлические струи жидкости. Структура гидравлической струи. Дальность полета струй
- •5.4. Давление струи на твердую преграду
- •Тест – тренинг - контроль 5-1
- •Глава 6. Газодинамика.
- •Методические указания
- •6.1. Понятия: газовая динамика; закономерности течения газов (уравнение неразрывности, уравнение Бернулли); истечение газа из неограниченного объема; весовой расход
- •Тест – тренинг – контроль 6 – 1
- •Глава 7. Движение жидкости в пористой среде
- •Методические указания
- •7.1. Основные понятия и определения фильтрации
- •7.2. Основной закон фильтрации и границы его применения
- •7.3. Закон Дарси
- •7.4. Физический смысл к (коэффициента фильтрации)
- •7.5. Приток грунтовой воды к сооружениям
- •7.6. Простейшие случаи установившейся напорной фильтрации несжимаемой жидкости
- •Тест – тренинг - контроль 7-1
- •Раздел 4. Неньютоновские жидкости
- •Методические указания
- •Глава 8. Режимы движения вязкопластичной
- •8.2. Вязкопластичные жидкости и их свойства
- •Режимы движения вязкопластичной жидкости
- •8.4 Роль бурового раствора в б.Н.Г.С. Условия выноса разбуренной породы на поверхность
- •8.5 Турбобур
- •Раздел 5. Основы термодинамики
- •Глава 9. Основные газовые законы. Теплоемкость
- •Методическое указание
- •9.1. Основные определения и законы идеальных газов.
- •Закон Гей-Люссака
- •Закон Шарля
- •Уравнение состояния идеальных газов.
- •Закон Авогадро
- •Уравнение Менделеева
- •Тест - тренинг - контроль 9-1
- •4. Изотермический
- •9.2. Газовые смеси. Теплоемкость смеси
- •9.3. Понятие газовой смеси. Парциальное давление. Основные характеристики смеси
- •9.4. Теплоемкость: виды, истинная и средняя. Теплоемкость
- •Контрольные вопросы:
- •Тест – тренинг - контроль 9 -2
- •9.5. Внутренняя энергия. Энтальпия. Принцип эквивалентности Методические указания
- •Энтальпия, как функция температуры
- •Тест – тренинг - контроль 9-3
- •Глава 10. Термодинамические процессы изменения состояния
- •Методическое указание
- •10.1. Классификация термодинамических процессов.
- •3. Изотермический процесс.
- •4. Адиабатный процесс.
- •5. Политропный процесс
- •Тест – тренинг - контроль 10-1
- •10.2. Второе начало (закон) термодинамики
- •Математическая запись закона
- •Энтропия
- •Контрольные вопросы:
- •Глава 11. Теоретические циклы паросиловых и холодильных установок двигателей внутреннего сгорания
- •Методические указания
- •11.1 Простейшая схема п.С.У.
- •11.2. Цикл Ренкина. Пути повышения экономичности п.С.У.
- •11.3. Цикл компрессорной холодильной установки
- •11.4. Теоретические циклы д.В.С. Циклы поршневых двигателей внутреннего сгорания
- •4.) Цикл со смешанным подводом количества тепла (Цикл Тринклер)
- •11.5. Циклы газотурбинных установок. Цикл гту
- •Тест – тренинг - контроль 11-1
- •Тест – тренинг - контроль 11-2
- •Глава 12. Термодинамические процессы компрессорных машин
- •Методические указания
- •12.1. Классификация компрессоров
- •12.2. Основные процессы работы одноступенчатого поршневого компрессора
- •12.3. Основные характеристики работы поршневого компрессора
- •12.4. Двухступенчатый компрессор
- •12.5 Достоинства и недостатки компрессоров
- •Контрольные вопросы:
- •Тест – тренинг - контроль 12-1
- •Глава 13. Водяной пар. Свойства водяного пара. Дросселирование газов и паров.
- •Методические указания
- •13.1. Процесс парообразования. Виды пара:
- •Тест – тренинг - контроль № 13 – 1
- •13.2. Истечение газов, дроссель – эффект.
- •Методическое указание
- •Раздел 6. Теплообмен.
- •Глава 14. Законы теплообмена.
- •14.1. Виды теплообмена. Формы передачи тепла.
- •14. 2. Передача теплоты теплопроводностью через плоскую однослойную и многослойную стенки
- •14. 3. Основной закон конвективного теплообмена
- •14.4. Теплообмен излучением между твердыми телами
- •14. 5. Теплопередача через плоскую и криволинейную однослойную и многослойную стенки
- •14.6.Теплопередача при переменных температурах (расчет теплообменных аппаратов)
- •Контрольные вопросы:
- •Глава 15. Топливо, продукты сгорания,
- •15.1. Топливо. Продукты сгорания.
- •15.2. Понятие о котельной установке, котельном агрегате и
- •15.3. Основные параметры работы парового котельного агрегата
- •15.4. Основные теории массопередачи
- •15. 5. Понятия о равновесии между фазами
- •15.6. Основное уравнение массопередачи
- •15.7. Основные законы термодинамики равновесных систем
- •Раздел 7. Массообмен
- •Глава 16. Основные законы равновесных систем и
- •16.1. Основные теории массопередачисистемы
- •16. 2. Абсорбция и десорбция
- •1. Сущность процесса абсорбции и десорбции
- •2. Сущность процесса экстракции
- •3. Сущность процесса адсорбции
- •2. Характеристики адсорбентов
- •Контрольные вопросы:
- •Тест – тренинг - контроль 16 – 1
2.10. Приборы для измерения давления жидкостей и газов.
Рис. 2.8. Жидкостные манометры:
Манометр с U-образной трубкой, которая крепится на пластинке, проградуированной в миллиметрах, и заполняется жидкостью с известной плотностью ρ1 (спиртом, водой или ртутью). Для жидкости плотностью ρ2 измеряемое в точке М давление
рM=ρh1h2g.
Рис. 2.9.
В
основу работы манометра с вертикальной
трубкой
положено
существенное различие площадей сечения
трубки и резервуара. В этом приборе
связь между уровнем жидкости в
проградуированной в миллиметрах трубке
и уровнем в резервуаре пренебрежительно
мала.
Рис. 2.10.
Для измерения разности давлений в двух точках служат дифференциальные манометры, простейшим из которых является U-образный манометр. При помощи такого манометра, обычно заполняемого ртутью, можно измерять разность давлений p1 и p2 жидкости плотностью p, которая полностью заполняет соединительные трубки:
p1-p2=hg (ρрт – ρ)
где ρрт — плотность ртути.
Для
измерения малых перепадов давления
воды применяют двухжидкостный
микроманометр
представляющий
собой перевернутую U-образную
трубку с маслом или керосином в верхней
части.
Искомый перепад
p1 - p2=hg (ρ2-ρ1)
где ρ1 и ρ2 — плотности масла (керосина) и воды соответственно.
Рис. 2.11.
Двухжидкостный
чашечный манометр предназначен для
измерения давления или разрежения
воздуха в интервале 0,01 ...0,05 МПа. В чашку
наливают ртуть, а в трубку, верхний и
нижний участки которой имеют различные
диаметры (соответственно
d1
и
d2),
—
спирт
или керосин. Давление определяется
показанием H
манометра.
Рис. 2.12
Микроманометр с наклонной трубкой рекомендуется для измерения малых давлений, так как его чувствительность
Рис. 2.13.
значительно выше, чем у U-образного манометра. Смещение мениска определяется углом наклона трубки α: h = l/sinα
Рис.
2.14.
Прибор жидкостного типа — пьезометр, измеряет давление в жид-
кости высотой столба той же жидкости. Пьезометр представляет собой стеклянную
трубку, открытую с одного конца, а вторым концом присоединяемую к сосуду, в
котором измеряется давление (рис. 2.14).
Пусть абсолютное давление р на поверхности жидкости в сосуде
будет больше атмосферного. Тогда жидкость в трубке пьезометра поднимется
выше уровня жидкости в сосуде на некоторую высоту hп. Так как в покоящейся
жидкости поверхностями равных давлений являются горизонтальные плоскости,
давление в точке А будет таким же, как и на том же уровне в сосуде (рА = р).
По основному уравнению гидростатики рА = ра + ρghп, но
рА – ра = ри. Следовательно,
ри = ρghп, (2.27)
Пьезометрическая высота характеризует избыточное давление на свободной поверхности. Эта высота может быть определена из формулы:
hп = ри / (ρg) (2.28)
Если пьезометрическую высоту измерять от точки В присоединения
пьезометра, то величина ри в формуле (2.27) будет соответствовать избыточному
давлению в этой точке. Уровни жидкости в пьезометрах будут одинаковы незави-
симо от места их присоединения к сосуду. Поверхность, которую можно провести
по эти уровням, называют пьезометрической поверхностью.
Микроманометр Асканиа состоит из U-образной трубки, нижняя часть которой образована гибким шлангом. Трубка заполнена водой. Одна из ветвей трубки в своей верхней части сообщается с атмосферой и может перемещаться в вертикальной плоскости для приведения в другой ветви уровня воды к первоначальному положению. Перемещение этой ветви определяет измеряемое давление.
Рис.
2.15.
Микроманометр Дебро представляет собой поплавок с проградуированной рейкой, помещенный в одну из двух коаксиальных трубок, наполненных водой. Считывание
результата измерения производится с помощью
микроскопа.
Рис. 2.17.
Механические манометры.
Чувствительным элементом манометра Бурдона является трубка эллиптического сечения, изогнутая в виде полумесяца. Среда, в которой измеряется давление, заполняет ее до закрепленного конца. Подвижный конец соединен рычажной передачей с показывающей стрелкой.
Рис. 2.18.
Мембранный манометр имеет небольшой резервуар с мембраной, деформирующейся под действием давления и соединенной с показывающей стрелкой.
Рис. 2.19.
Грузопоршневой манометр представляет собой эталонный прибор, для которого изготовитель составляет поправочные таблицы в зависимости от температуры и давления.
Рис. 2.20.
Электрические манометры.
Рис. 2.21. Схема емкостного датчика
У манометров с емкостными датчиками давления измерительный элемент образован детекторной мембраной 4 и двумя неподвижными электронами 2, образующими пару конденсаторов. Изменение давления приводит к дисбалансу между двумя
конденсаторами. Сигнал, пропорциональный разности их емкостей, обрабатывается электронным контуром.
В датчиках сопротивления тонкая мембрана, несущая на себе тензометрические датчики соединена в виде мостика Уитсона и находится под давлением. Дисбаланс мостика при нагрузке порождает пропорциональный ей сигнал.
Различают три типа датчиков сопротивления в зависимости от технологии их изготовления: металлические датчики, наклеенные на мембрану или расположенные в вакууме; полупроводниковые датчики на кремниевых пластинках; датчики, расположенные в виде толстых слоев.
В датчиках с дифференциальным трансформатором используется трансформатор, сердечник которого перемещается под действием элемента, деформирующегося под давлением. Возникающее при этом изменение связи между вторичными обмотками трансформатора преобразуется в соответствующий сигнал электронной цепью.