
- •Ботаника – комплексная наука о растениях. Растения – живой организм. Дисциплины ботаники. Значение ботаники для фармакогнозии и медицины.
- •Клетка – основная структурная, функциональная и генетическая единица. Компоненты эукариотической растительной клетки, поверхностный аппарат, цитоплазма, ядерный аппарат
- •3.Характерные особенности растительной клетки. Их форма, размеры, структура и функции
- •Цитоплазма. Гиалоплазма. Плазмолемма. Тонопласт. Органеллы растительной клетки
- •Типы пластид, их субмикроскопическая структура, место нахождения в клетках и органах. Функции пластид
- •Ядро, его структурные компоненты, локализация днк и рнк в ядре. Роль ядра в жизни клетки
- •Способы деления клеток. Жизненный цикл клетки
- •Митоз (кариокинез), фазы митоза, характерные особенности митоза растительных клеток. Биологический смысл митоза
- •Особенности митоза у растений и у животных:
- •Клеточная стенка, структура и химический состав первичной и вторичной клеточной оболочки. Примеры тканей с первичной и вторичной клеточными оболочками.
- •Поры, простые и окаймленные поровые каналы, плазмодесмы и перфорации, их формирование и функции
- •Вторичные химические изменения клеточной стенки. Реактивы для обнаружения видоизмененных клеточных оболочек
- •Вакуоли и клеточный сок, состав клеточного сока, его свойства. Главные функции вакуолей
- •Явление тургора и плазмолиза в растительной клетке, осмотическое давление и сосущая сила клеток, их взаимосвязь
- •Клеточные включения (эргастические вещества). Запасные вещества (белки, жиры, масла), их форма, функции и значение для растительных клеток
- •Клеточные включения, экскреторные вещества, их форма, структура и значение для растений
- •Растительные ткани. Принципы их классификаций, функции различных тканей
- •Образовательные ткани, их классификация, происхождение, строение и функции
- •Наружные и пограничные ткани стебля. Эпидерма, ее происхождение, строение и функции
- •Отличительные особенности эпидермы листьев и стеблей однодольных и двудольных растений, строение устьичного комплекса, механизм его работы
- •Ризодерма, веламен, происхождение, особенности строения, функции
- •Перидерма стебля и корня. Происхождение, характерные особенности. Значение
- •Корка (ритидом), ее формирование и значение
- •Трихомы и секреторные структуры. Классификация по группам. Их особенности и значения для растений
- •Вторичные меристемы. Их образование, строение , и функции.
- •Основные ткани
- •Механические ткани, их типы, характерные особенности строения, функции
- •Проводящие ткани, флоэма и ксилема – комплексные ткани. Состав флоэмы, формирование ситовидных трубок, их функции
- •Состав ксилемы (древесины). Образование, их типы. Типы перфорации сосудов. Значение сосудов
- •Трахеиды и сосуды. Их сходства и различия
- •Свп, их месторасположение, формирование элементов вторичной флоэмы и вторичной ксилемы
- •32. Стебель
- •42. Корень, его функции. Зоны корня, их характерные признаки. Гистогены корня
- •43. Первичная анатомическая структура корня. Отличительные особенности корней однодольных и двудольных растений в зоне всасывания
- •44. Образование камбия и феллогена в корне. Переход ко вторичному строению
- •Анатомическое строение корнеплода
- •46. Лист, его функции. Типы листьев с учетом анатомической структуры. Строение дорзовентрального листа
-
Отличительные особенности эпидермы листьев и стеблей однодольных и двудольных растений, строение устьичного комплекса, механизм его работы
Устьица – образования для регуляции транспирации и газообмена. Устьице состоит из двух замыкающих клеток бобовидной формы, между которыми находится устьичная щель, которая может расширяться и сужаться. Под щелью располагается крупный межклетник – подустьичная полость. Клетки эпидермы, примыкающие к замыкающим клеткам, часто отличаются от остальных клеток, и тогда их называют побочными, или околоустьичными клетками (рис. 3.6 ). Они участвуют в движении замыкающих клеток.
Рис. 3.6. Схема строения устьица.
Замыкающие и побочные клетки образуют устьичный аппарат. В зависимости от числа побочных клеток и их расположения относительно устьичной щели выделяют несколько типов устьичного аппарата (рис. 3.7 ). В фармакогнозии типы устьичного аппарата используются для диагностики лекарственного растительного сырья.
Рис. 3.7. Типы устьичного аппарата : 1 – аномоцитный; 2 – диацитный; 3 – парацитный; 4 – анизоцитный; 5 – тетрацитный; 5 – энциклоцитный.
Аномоцитный тип устьичного аппарата обычен для всех групп растений, исключая хвощи. Побочные клетки в этом случае не отличаются от остальных клеток эпидермы.
Диацитный тип характеризуется двумя побочными клетками, которые располагаются перпендикулярно устьичной щели. Этот тип обнаружен у некоторых цветковых растений, в частности, у большинства губоцветных (мята, шалфей, чабрец, душица) и гвоздичных.
При парацитном типе две побочные клетки располагаются параллельно замыкающим и устьичной щели. Он найден у папоротников, хвощей и ряда цветковых растений.
Анизоцитный тип обнаружен только у цветковых растений, в частности, он встречается у крестоцветных (пастушья сумка, желтушник) и пасленовых (белена, дурман, красавка). В этом случае замыкающие клетки окружены тремя побочными, одна из которых заметно крупнее или мельче остальных.
Тетрацитным типом устьичного аппарата характеризуются преимущественно однодольные.
При энциклоцитном типе побочные клетки образуют узкое кольцо вокруг замыкающих клеток. Подобная структура найдена у папоротников, голосеменных и некоторых цветковых.
Механизм движения замыкающих клеток основан на том, что стенки их утолщены неравномерно, поэтому форма клеток меняется при изменении их объема. Изменение объема клеток устьичного аппарата происходит вследствие изменения осмотического давления. Увеличение давления происходит за счет активного поступления из соседних клеток ионов калия, а также за счет повышения концентрации сахаров, образующихся в процессе фотосинтеза. За счет поступления воды объем вакуоли увеличивается, тургорное давление растет, и устьичная щель открывается. Отток ионов совершается пассивно, вода выходит из замыкающих клеток, их объем уменьшается, и устьичная щель закрывается. У большинства растений устьица открываются в светлое время суток и закрываются ночью. Это связано с тем, что фотосинтез протекает только на свету, и для него необходим приток из атмосферы углекислого газа.
Число и распределение устьиц очень варьируют в зависимости от вида растения и экологических условий. У большинства растений их число составляет 100-700 на 1мм2 поверхности листа. С помощью устьиц эпидерма эффективно регулирует газообмен и транспирацию. Если устьица полностью открыты, то транспирация идет с такой же скоростью, как если бы эпидермы не было вовсе (согласно закону Дальтона, при одной и той же суммарной площади отверстий скорость испарения тем выше, чем больше число отверстий). При закрытых устьицах транспирация резко снижается и фактически может идти только через кутикулу.