Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все углеводы.doc
Скачиваний:
58
Добавлен:
16.11.2018
Размер:
928.77 Кб
Скачать

Глюкоза запасается в клетках в форме гликогена.

Гликоген – большая ветвистая молекула с молекулярной массой 106-107 Дальтон. Линейные участки молекулы гликогена связаны α(1→4) связью, точки ветвления представлены α(1→6) гликозидной связью.

Синтез гликогена (гликогенез) осуществляется почти во всех клетках, но депо гликогена – печень, запасающая его в количестве, составляющем до 10 % массы органа. При углеводном голодании распад гликогена осуществляется очень быстро, образующаяся при этом глюкоза поступает в кровоток и используется для нужд нервной и других тканей организма. В мышцах содержится до 1% гликогена, но этот гликоген расходуется исключительно для работы самой мышечной ткани. В отличие от гликогена печени, гликоген мышц достаточно стабилен.

Синтез гликогена (Рис.8) начинается с фосфорилирования глюкозы гексокиназой либо глюкокиназой (эта реакция описана ниже»). Далее глюкозо-6-фосфат под действием фосфоглюкомутазы превращается в глюкозо-1-фосфат. Глюкозо-1-фосфат реагирует с УТФ, в результате чего образуется активная форма глюкозы – УДФ-глюкоза. Реакция катализируется ферментом УДФ-глюкозо-пирофосфорилазой. Наконец, УДФ-глюкоза присоединяется к молекуле «затравочного гликогена» с помощью гликогенсинтазы. «Затравочным гликогеном» называется остаток внутриклеточного гликогена, связанного с белковой цепью, который не исчезает даже при длительном голодании.

Рис.8. Синтез гликогена

Гликогенсинтаза образует α(1→4) гликозидные связи, присоединяя 7 остатков глюкозы к ветви «затравочного гликогена», содержащей 4 остатка глюкозы (рис).

α(1→4) гликозидная связь

Рис.9. Функция гликогенсинтазы

Так как молекула гликогена является ветвистой, то в реакция синтеза гликогена участвует фермент ветвления – амило-(1,4→1,6)-трансглюкозидаза: фермент образует (1→6) гликозидную связь, перенося 7 остатков глюкозы с одной из длинных боковых цепей гликогена и формирует новую ветвь (рис. 6.5).

Рис.10. Функционирование фермента ветвления.

Ветвление повышает гидрофильность молекулы гликогена, при этом в нём увеличивается также количество нередуцируемых концевых остатков – мест действия гликогенсинтазы и фосфорилазы, иными словами, ветвление увеличивает скорость синтеза и распада гликогена.

В регуляции синтеза гликогена ключевую роль играет гликогенсинтаза. Фермент находится в клетке в неактивном, фосфорилированном, состоянии и называется гликогенсинтаза D (от анг. dependent - зависимый), т.е. активность его зависит от глюкозо-6-фосфата (аллостерический активатор) и гормона инсулина. Инсулин непосредственно активирует фермент фосфатазу, который и превращает гликогенсинтазу D в активную форму – гликогенсинтазу I (от англ.independent - независимый) – рис.11.

Рис.11.. Активирование гликогенсинтазы.

Гликогенолиз – процесс распада углеводов.

Пусковым механизмом гликогенолиза является начинающаяся гипогликемия. Голодание в течение суток приводит практически к полному исчерпанию запасов гликогена

в печени; очень быстро гликоген расходуется при интенсивной физической нагрузке и стрессовых ситуациях.

Распад гликогена осуществляется 2 путями: 1/ гидролитически с участием α-амилазы и 2/ фосфоролитически с участием гликогенфосфорилазы. Основным в клетках является 2-й путь.

Гликогенфосфорилаза при участии фосфорной кислоты последовательно расщепляет линейные α(1→4) гликозидные связи с освобождением глюкозо-1-фосфата:

Соседние файлы в предмете Биохимия