Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Зачет 2 (часть 1). БХ. Углеводы. Шпора

..docx
Скачиваний:
106
Добавлен:
13.02.2016
Размер:
64.37 Кб
Скачать

Вопрос1. Строение, Классификация и роль углеводов

Углеводы – многоатомные

альдегиды или кетоны. По

способности к

гидролизу они классифи-

цируются на три группы:

  1. Моносахариды

(альдозы, кетозы);

  1. олигосахариды;

  2. полисахариды.

КИСЛЫЕ:

1)Гиалуроновая кислота. Входит в состав роговицы, сердечных клапанов, суставной жидкости. Её основная функция – связывание воды. Она вязка, непроницаема для бактерий, регулирует распределение веществ в организме.

2)Гепарин

Нейтральные:

Они входят в состав веществ, определяющей группу крови (агглютининов и агглютиногенов), в состав веществ, выполняющих имунные функции, белков, гормонов, ферментов, могут встречаться в свободном состоянии в тканях и жидкостях организма.

БИОЛОГИЧЕСКИЕ ФУНКЦИИ УГЛЕВОДОВ.

  1. Энергетическая (при окислении 1 г ---- 16,9 кДж )

  2. Структурная (все оранизмы используют углеводы для построения скелкта: хитин – у насекомых, клетка – у растений)

  1. Регуляторная (глюкоза регулирует содержание гормонов)

  2. Защитная (углеводы,входящие в состав мукополисахаридов и гликопротеидов, обеспечивает защиту пдлежаих тканей от механического воздействия .

  3. Анаболическая (синтез липидов)

  4. Резервная (гликоген)

  5. Рецепторная (в состав большинства рецепторов клетки входят углеводные фрагменты. Последовательность углеводов в которых несёт важную информацию о структуре рецептора. В частности гликопротеины образуют рецепторы узнавания одних клеток другими, поэтому проблема трансплантации органов заключена в специфике этих рецепторов)

  6. Иммунологическая (в состав большинства образуемых антител входят углеводы)

  7. Католитическая (в состав многих ферментов входят углеводы)

  8. Аммортизаторная (гликопротеиды входят в состав синовиальной жидкости и препядствуют повреждению суставных поверхностей; образуют основное вещество соединительной ткани.

  9. Антифризная (препядствуют замерзанию)

Кроме этого углеводы выполняют резервную функцию (крахмал, гликоген), учавствуют в осмотических процессах, обладают антикоагулянтными свойствами (гепарин), необходимы для нормального окисления белков и липидов.

Вопрос2.Переваривание и всасывание углеводов ЖКТ

Переваривание начинается в ротовой полости за счёт слюны, содержащей муцин. Переваривание крахмала во рту начинается под действием а – амилазы (птиалин). У некоторых животных (лошади, собаки) а – амилаза отсутствует и крахмал переваривается в тонкой кишке под действием панкреатической амилазы. Кроме а – амилазы существует ещё два вида амилаз – в - и гамма – амилазы. Они содержатся в тканях. в – амилаза гидролизирует крахмал, отщеплением мальтозы, то есть является экзогликозидазой. Гамма – амилаза отщепляет от крахмала гликозидные остатки.

Различают три вида пищеварения:

1) полостное (неэффективно, так как вероятность встречи фермента и субстрата не велика и подчиняется закону Броуновского движения)

2) пристеночное (осуществляется в гликокаликсе, который представляет собой гликопротеиновый комплекс, локализованный над и под микроворсинками тонкого кишечника. Сквозь сеть гликокаликса не проникают микробы, поэтому среда пищеварения стерильна, ферменты иммобилизованы на микроворсинках, конкурентного торможения их не происходит, так как среда стерильна. Всё это определяет высокую вероятность встречи фермента и субстрата, а значит и высокую эффективность этого пищеварения, кроме этого образующийся продукт сразу же убирается, поэтому ретроингибирование не имеет места).

Процессы всасывания осуществляются тремя путями:

1) пассивная диффузия (по градиенту концентрации), так переносятся манноза, арабиноза, ксилоза.

2) облегчённая диффузия (облегчается путём образования гидрофобных каналов и пор при контакте мембраны с транспортируемым веществом).

3) активный транспорт (против градиента концентрации, за счёт энергии макроэргических связей АТФ или энергии мембранного потенциала).

3) внутриклеточное (проходит по механизму фаго - и пиноцитоза; является несовершенным, поскольку может приводить к развитию аллергических реакций).

Вопрос3. Роль клетчатки в пищеварении

Целлюлоза (или клетчатка) – гомополисахарид, который является главным

структурным компонентом клеточных стенок растений: фруктов и овощей. Молекулы

целлюлозы – линейные неразветвленные цепи, которые состоят из остатков β,D'глюкозы

и напоминают волокна (нити). В пищеварительном тракте человека целлюлоза не

расщепляется, поскольку у нас нет для этого соответствующего фермента α5амилазы.

Кроме клетчатки с едой в пищеварительный тракт попадают и другие растительные

полисахариды, которые формируют пищевые волокна, к ним относится: целлюлоза,

гемицеллюлоза, лигнины, смолы, пектозаны.

Пищевые волокна играют важную роль в физиологии пищеварения:

5 стимулируют моторику кишечника;

5 задерживают воду в кишечнике и формируют каловые массы;

5 адсорбируют холестерин, желчные кислоты, билирубин и способствуют их

выведению;

5 выводят экзо5 и эндогенные токсины и радионуклеиды.

5 являются источником питания для кишечной микрофлоры, которая синтезирует из

них некоторые витамины: К,В3,В8,В9,В12

Вопрос4.Нарушение переваривания и всасывания углеводов. Мальабсорбция

Мальабсорбция (синдром нарушенного всасывания) характеризуется расстройством всасывания в тонкой кишке одного или нескольких питательных веществ и возникновением нарушения обменных процессов.

Выделяют первичный (наследственно обусловленный) и вторичный (приобретенный) синдром нарушенного всасывания. Первичный синдром развивается при наследственных изменениях строения слизистой оболочки тонкой кишки и генетически обусловленной ферменТопатии. В эту группу входит относительно редко встречающееся врожденное нарушение всасывания в тонкой кишке, обусловленное дефицитом в слизистой оболочке тонкой кишки специфических ферментов-переносчиков. При этом нарушается всасывание моносахаридов и аминокислот (например, триптофана). К этой группе относится и нарушение всасывания белка злаков (пшеницы, ячменя, ржи, овса) - глутена, приводящее к возникновению глутеновой болезни. Из первичных нарушений всасывания у взрослых чаще встречается непереносимость дисахаридов. Вторичный синдром недостаточности всасывания связан с приобретенными изменениями структуры слизистой оболочки тонкой кишки.

Вопрос5.Механизм транспорта моносахаров в клетку,роль гармонов. После переваривания крахмала и гликогена, после расщепления дисахаридов в полости кишечника накапливается глюкоза и другие моносахариды, которые должны попасть в кровь. Для этого им необходимо преодолеть, как минимум, апикальную мембрану энтероцита и его базальную мембрану.Всасывание моносахаридов из просвета кишечника происходит по механизму вторичного активного транспорта. Это значит, что затрата энергии при переносе сахаров происходит, но тратится она не непосредственно на транспорт молекулы, а на создание градиента концентрации другого вещества.В случае моносахаридов таким веществом является натрий. Фермент Na++-АТФаза постоянно, в обмен на калий, выкачивает ионы натрия из клетки, именно этот транспорт требует затрат энергии. В просвете кишечника содержание натрия относительно высоко и он связывается со специфическим мембранным белком, имеющим два центра связывания: один для натрия, другой для сахара. Примечательно то, что сахар связывается с белком только после того, как с ним свяжется натрий. Белок-транспортер свободно мигрирует в толще мембраны. При контакте белка с цитоплазмой натрий быстро отделяется от него по градиенту концентрации и сразу отделяется сахар. Результатом является накопление сахара в клетке, а ионы натрия выкачиваются Na++-АТФазой.Выход глюкозы из клетки в межклеточное пространство и далее кровь происходит благодаря простой и облегченной диффузии.

Вопрос6.Метаболизм галактозы и фруктозы в норме и при пат.

Значительное количество фруктозы, образующееся при расщеплении сахарозы, прежде чем поступить в систему воротной вены, превращается в глюкозу уже в клетках кишечника. Другая часть фруктозы всасывается с помощью белка-переносчика, т.е. путём облегчённой диффузии.

Нарушения метаболизма фруктозы

Недостаточность фруктокиназы клинически не проявляется. Фруктоза накапливается в крови и выделяется с мочой, где её можно обнаружить лабораторными методами. 

наследственная непереносимость фруктозы, возникающая при генетически обусловленном дефекте фруктозо-1-фосфатальдолазы, не проявляется, пока ребёнок питается грудным молоком, т.е. пока пища не содержит фруктозы. Симптомы возникают, когда в рацион добавляют фрукты, соки, сахарозу. 

Галактоза образуется в кишечнике в результате гидролиза лактозы.

Нарушения метаболизма галактозы

Обмен галактозы особенно интересен в связи с наследственным заболеванием - галактоземией.

Галактоземия возникает при нарушении обмена галактозы, обусловленном наследственным дефектом любого из трёх ферментов, включающих галактозу в метаболизм глюкозы 

Это заболевание проявляется очень рано, и особенно опасно для детей, так как основным источником углеводов для них служит материнское молоко, содержащее лактозу. Ранние симптомы дефекта ГАЛТ: рвота, диарея, дегидратация, уменьшение массы тела, желтуха.

Вопрос8.Строение и метаболизм гликогена.

Гликоген - разветвлённый гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидной связью. В точках ветвления мономеры соединены α-1,6-гликозидными связями. В клетках животных гликоген - основной резервный полисахарид. При полимеризации глюкозы снижается растворимость образующейся молекулы гликогена и, следовательно, её влияние на осмотическое давление в клетке.

После приёма пищи, богатой углеводами, запас гликогена в печени может составлять примерно 5% от её массы. Распад гликогена печени служит в основном для поддержания уровня глюкозы в крови в постабсорбтивном периоде. Поэтому содержание гликогена в печени изменяется в зависимости от ритма питания. При длительном голодании оно снижается почти до нуля

Гликоген синтезируется в период пищеварения (через 1-2 ч после приёма углеводной пищи). 

Глюкоза – глюкозо-6-фосфат – глюкозо-1-фосфат – УДФ-глюкоза – гликоген

В переключении метаболических путей в печени участвуют гормоны инсулин, глюкагон и адреналин, а в мышцах - инсулин и адреналин.

Инсулин - белковый гормон, синтезируется и секретируется в кровь р-клетками островков Лангерганса поджелудочной железы, β-клетки чувствительны к изменениям содержания глюкозы в крови и секретируют инсулин в ответ на повышение её содержания после приёма пищи. Синтез инсулина регулируется глюкозой

Глюкагон  - "гормон голода", вырабатываемый α-клетками поджелудочной железы в ответ на снижение уровня глюкозы в крови.

Адреналин выделяется из клеток мозгового вещества надпочечников в ответ на сигналы нервной системы, идущие из мозга при возникновении экстремальных ситуаций

Влияние гормонов на синтез и распад гликогена осуществляется путём изменения в противоположных направлениях активности двух ключевых ферментов: гликогенсинтазы и гликогенфосфорилазы с помощью их фосфорилирования и дефосфорилирования

Взаимопревращения 2 форм гликогенфосфорилазы обеспечиваются действием ферментов киназы фосфорилазы и фосфопротеинфосфатазы. Активация киназы фосфорилазы происходит под действием протеинкиназы А - ПКА (цАМФ-зависимой). цАМФ сначала активирует протеинкиназу А, которая фосфорилирует киназу фосфорилазы, переводя её в активное состояние, а та, в свою очередь, фосфорилирует гликогенфосфорилазу. Синтез цАМФ стимулируется адреналином и глюкагоном

Активация фосфопротеинфосфатазы происходит в результате реакции фосфорилирования, катализируемой специфической протеинкиназой, которая, в свою очередь, активируется инсулином посредством каскада реакций с участием

Вопрос9. Баланс гликогена в организме

В организме человека может содержаться до 450 г гликогена, треть из которого накапливается в печени, а остальное — главным образом в мышцах. Содержание гликогена в других органах незначительно. Гликоген печени служит прежде всего для поддержания уровня глюкозы в крови в фазе пострезорбции. Поэтому содержание гликогена в печени варьирует в широких пределах. При длительном голодании оно падает почти до нуля, после чего начинается снабжение организма глюкозой с помощью глюконеогенеза Гликоген мышц служит резервом энергии и не участвует в регуляции уровня глюкозы в крови. В мышцах отсутствует глюкозо-6-фосфатаза, поэтому гликоген мышц не может быть источником глюкозы в крови. По этой причине колебания содержания гликогена в мышцах меньше, чем в печени.

Гликогеновые болезни - группа наследственных нарушений, в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена, либо нарушение регуляции этих ферментов.

.Гликогенозы - заболевания, обусловленные дефектом ферментов, участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, сердечной или скелетных мышцах, почках, лёгких и других органах

Печёночные формы гликогенозов ведут к нарушению использования гликогена для поддержания уровня глюкозы в крови. Поэтому общий симптом для этих форм - гипогликемия в постабсорбтивный период.

Болезнь Гирке (тип I) отмечаютнаиболее часто.. Причина этого заболевания - наследственный дефект глюкозо-6-фосфатазы - фермента, обеспечивающего выход глюкозы в кровоток после её высвобождения из гликогена клеток печени

Гипогликемия - следствие нарушения реакции образования свободной глюкозы из глюкозо-6-фосфата. 

Болезнь МакАрдла (тип V) - аутосомнорецессивная патология, при которой полностью отсутствует в скелетных мышцах активность гликогенфосфорилазы.

Агликогеноз (гликогеноз 0 по классификации) - заболевание, возникающее в результате дефекта гликогенсинтазы.

Вопрос10.Анаэробный гликолиз. Локализация, реакции.

При дефиците кислорода или полном его отсутствии происходит анаэробный гликолиз. Молекула глюкозы расщепляется и окисляется до двух молекул молочной кислоты , и энергии окисления глюкозы в этом случае хватает только на две молекулы АТФ . Это результат неполного окисления глюкозы. Благодаря этому мы можем короткое время обходиться без кислорода.

При расщеплении одной молекулы глюкозы образуется всего две молекулы АТФ (в аэробных условиях - до 38). В итоге в клетке снижаются запасы АТФ и энергии. При анаэробном гликолизе накапливается молочная кислота , и возникает внутриклеточный ацидоз . Нарушается работа ионных насосов , снижается трансмемранный потенциал , и в клетке накапливаются Nа+ и вода. Уменьшаются концентрационные градиенты К+, Сl-, Са2+. Накопление в клетке кальция усугубляет поражение митохондрий .

В анэйробных условиях гликолиз становится основным процессом, обеспечивающим клетку АТФ (ATP)

Различают местную и общую регуляцию.

Местная регуляция осуществляется путём изменения активности ферментов под действием различных метаболитов внутри клетки.

Регуляция гликолиза в целом, сразу для всего организма, происходит под действием гормонов, которые, влияя через молекулы вторичных посредников, изменяют внутриклеточный метаболизм.

Важное значение в стимуляции гликолиза принадлежит инсулину. Глюкагон и адреналин являются наиболее значимыми гормональными ингибиторами гликолиза.

Регуляция гликолиза осуществляется через несколько ключевых этапов. Реакции, катализируемые гексокиназой , фосфофруктокиназой и пируваткиназой отличаются существенным уменьшением свободной энергии и являются практически необратимыми, что позволяет им быть эффективными точками регуляции гликолиза.

Энергетический баланс полного аэробного окисления глюкозы:

Количество синтезированных молекул АТФ:

@ на этапе аэробного гликолиза ( до образования ПВК)– 2 молекулы АТФ (реакции

субстратного фосфорилирования);

@ за счет окисления в митохондриях 2 мол. гликолитического НАДН2 – 4.6 мол. АТФ (в

процессе аэробного гликолиза в цитоплазме клеток образуется 2 мол. НАДН2 , которые 5

транспортируются на дыхательную цепь митохондрий специальными челночными

малат-аспартатной и глицерофосфатной системами; считается, что 2 мол. АТФ

расходуются на процесс переноса);

@ в процессе окислительного декарбоксилирования 2 мол ПВК : 2х3 = 6 мол.АТФ;

@ в результате окисления 2 мол. Ацетил-КоА в ЦТК Кребса : 2х12= 24 мол. АТФ.

Таким образом, общее количество АТФ, полученное при полном аэробном окисления 1 мол.

глюкозы до СО2 и Н2О, составляет 36-38 мол. АТФ

Вопрос7.Значение фосфорилирования глюкозы.

Глюкоза, поступающая в клетки органов и тканей, сразу же подвергается фосфорилированию с использованием АТФ. Эту реакцию во многих тканях катализирует фермент гексокиназа, а в печени и поджелудочной железе - фермент глюкокиназа. Фосфорилирование глюкозы - практически необратимая реакция, так как она протекает с использованием значительного количества энергии. 

Глюкокиназа. Фосфорилирование глюкозы в гепатоцитах в период пищеварения обеспечивается свойствами глюкокиназы, которая имеет высокое значение Кm - 10 ммоль/л. В этот период концентрация глюкозы в воротной вене больше, чем в других отделах кровяного русла и может превышать 10 ммоль/л, а следовательно, активность глюкокиназы в гепатоцитах повышается. Следует отметить, что активность глюкокиназы, в отличие от гексокиназы, не ингибируется продуктом катализируемой реакции - глюкозо-6-фосфатом

Гексокиназа отличается от глюкокиназы высоким сродством к глюкозе (Кm <0,1 ммоль/л). Следовательно, этот фермент, в отличие от глюкокиназы, активен при низкой концентрации глюкозы в крови, что характерно для постабсорбтивного состояния. Печень в этот период поглощает гораздо меньше глюкозы, так как скорость её внутриклеточного фосфорилирования глюкокиназой резко снижается.

Тогда как потребление глюкозы мозгом, эритроцитами и другими тканями обеспечивается активной в этих условиях гексокиназой. Фермент гексокиназа может катализировать фосфорилирование не только D-глюкозы, но и других гексоз, хотя и с меньшей скоростью. Активность гексокиназы изменяется в зависимости от потребностей клетки в энергии. В качестве регуляторов выступают соотношение АТФ/АДФ и внутриклеточный уровень глюкозо-6-фосфата (продукта катализируемой реакции). При снижении расхода энергии в клетке повышается уровень АТФ (относительно АДФ) и глюкозо-6-фосфата. В этом случае активность гексокиназы снижается, и, следовательно, уменьшается скорость поступления глюкозы в клетку.

Глюкозо-6-фосфат может использоваться в клетке в различных превращениях, основными из которых являются: синтез гликогена, катаболизм с образованием СО2 и Н2О или лактата, синтез пентоз. Распад глюкозы до конечных продуктов служит источником энергии для организма. Вместе с тем в процессе метаболизма глюкозо-6-фосфата образуются промежуточные продукты, используемые в дальнейшем для синтеза аминокислот, нуклеотидов, глицерина и жирных кислот. Таким образом, глюкозо-6-фосфат - не только субстрат для окисления, но и строительный материал для синтеза новых соединений

Вопрос11. Гликолитическая оксидоредукция.

реакции гликолитической оксидоредукции полностью обратимы. В отсутствие кислорода сколько НАДН2 образуется на 6-й стадии, столько же НАДН2 и отдаст свой водород на ПВК. Поэтому в анаэробных условиях конечным продуктом распада глюкозы является ЛАКТАТ. Процесс распада глюкозы до лактата в анаэробных условиях называется ГЛИКОЛИЗОМ, а гликогена - ГЛИКОГЕНОЛИЗОМ.  Таким образом, ГЛИКОЛИТИЧЕСКАЯ ОКСИДОРЕДУКЦИЯ - это сопряжение между 6-й стадией (окисление ФГА) и 11-й стадией (восстановление ПВК до лактата) гликолиза. В состоянии покоя, наступающего после интенсивной мыщечной работы, в клетку начинает поступать кислород. Это приводит к запуску митохондриальных дыхательных цепей. Запускаются окислительное декарбоксилирование пирувата, ЦТК и челночный механизм переноса водорода в митохондрии, а, значит, и ГБФ-путь распада глюкозы (гликогена). При этом процесс гликолиза тормозится автоматически. Торможение гликолиза поступившим в клетку кислородом называется ЭФФЕКТОМ ПАСТЕРА по имени ученого, открывшего это явление. В раковых клетках такого эффекта не наблюдается. В них одновременно могут протекать сразу два процесса: и ГБФ-путь, и гликолиз. Отсутствие эффекта Пастера в тканях, пораженных злокачественными опухолями, называется ЭФФЕКТОМ КРЭБТРИ

Субстратное фосфорилирование, в отличие от фосфорилирования в цепи переноса электронов не ингибируется «разобщающими» ядами (например, динитрофенолом) и не связано с фиксацией ферментов в мембранах митохондрий. Вклад Субстратного фосфорилированиея в клеточный фонд АТФ в аэробных условиях значительно меньше, чем вклад фосфорилирования в цепи переноса электронов.

Вопрос12.Спиртовое брожение.

Спиртовое брожение осуществляется так называемыми дрожжеподобными организмами, а также некоторыми плесневыми грибками. Суммарную реакцию спиртового 

брожения можно изобразить следующим образом:

Механизм реакции спиртового брожения чрезвычайно близок к гликолизу. Расхождение начинается лишь после этапа образования пирувата. При гликолизе пируват при участии фермента ЛДГ и кофермента НАДН восстанавливается в лактат. При спиртовом броженииэтот конечный этап заменен двумя другими ферментативными реакциями – пируватдекарбо-ксилазной и алкогольдегидрогеназной.

В дрожжевых клетках (спиртовое брожение) пируват вначале подвергается декарбоксилированию, в результате чего образуетсяацетальдегид. Данная реакция катализируется ферментом пируватдекарбоксилазой, который требует наличия ионов Mg и кофермента(ТПФ):

Образовавшийся ацетальдегид присоединяет к себе водород, отщепляемый от НАДН, восстанавливаясь при этом в этанол. Реакциякатализируется ферментом алкогольдегидрогеназой:

Таким образом, конечными продуктами спиртового брожения являются этанол и СО2, а не молочная кислота, как при гликолизе.

Вопрос13. Метаболизм этанола в организме

Катаболизм этилового спирта осуществляется главным образом в печени. Здесь окисляется от 75% до 98% введённого в организм этанола.

Окисление алкоголя - сложный биохимический процесс, в который вовлекаются основные метаболические процессы клетки. Превращение этанола в печени осуществляется тремя путями с образованием токсического метаболита - ацетальдегида (

Основную роль в метаболизме этанола играет цинксодержащий NAD+- зависимый фермент - алкогольдегидрогеназа, локализующаяся в основном в цитозоле и митохондриях печени (95%). В ходе реакции происходит дегидрирование этанола, образуются ацетальдегид и восстановленный кофермент NADH.

Фермент алкогольдегидрогеназа - димер, состоящий из идентичных или близких по первичной структуре полипептидных цепей, кодируемых аллелями одного гена. Существуют 3 изоформы алкогольдегидрогеназы (АДГ): АДГ1, АДГ2, АДГ3, различающиеся по строению протомеров, локализации и активности. Для европейцев характерно присутствие изоформ АДГ1 и АДГ3. У некоторых восточных народов преобладает изоформа АДГ2, характеризующаяся высокой активностью, это может быть причиной их повышенной чувствительности к алкоголю. При хроническом алкоголизме количество фермента в печени не увеличивается, т.е. он не является индуцируемым ферментом.

Цитохром Р450-зависимая микросомальная этанолокисляющая сисгема (МЭОС) локализована в мембране гладкого ЭР гепатоцитов. МЭОС играет незначительную роль в метаболизме небольших количеств алкоголя, но индуцируется этанолом, другими спиртами, лекарствами типа барбитуратов и приобретает существенное значение при злоупотреблении этими веществами.

С2Н5ОН + NADPH + Н+ + О2 → СН3СНО + NADP+ + 2Н2О.

Второстепенную роль в окислении этанола играет каталаза, находящаяся в пероксисомах цитоплазмы и митохондрий клеток печени. Этот фермент расщепляет примерно 2% этанола, но при этом утилизирует пероксид водорода.СН3СН2ОН + Н2О2 → СН3СНО + 2Н2О.

Вопрос14. Повреждающее действие этанола на организм.

Ацетальдегид, образовавшийся из этанола, окисляется до уксусной кислоты двумя ферментами: FAD -зависимой альдегидоксидазой и NAD+ -зависимой ацетальдегиддегидрогеназой (АлДГ).

СН3СНО + О2 + H2O → СН3СООН + Н2О2 .

Другой фермент ацетальдегиддегидрогеназа (АлДГ) окисляет субстрат при участии кофермента NAD+.

СН3СНО + Н2О + NAD+ → СН3СООН + NADH + H+.

Ферменты, участвующие в окислении этанола, - алкогольдегидрогеназа и АлДГ по разному распределены: в цитозоле - 80%/20% и митохондриях - 20%/80%. При поступлении больших доз алкоголя (более 2 г/кг) из-за разных скоростей окисления этанола и ацетальдегида в цитозоле резко повышается концентрация последнего. Ацетальдегид - очень реакционно-способное соединение; он неферментативно может ацетилировать SH-, NH2- группа белков и других соединений в клетке и нарушать их функции. Активное окисление этанола и ацетальдегида приводит к увеличению отношения NADH/NAD+, что снижает активность NAD+-зависимых ферментов в цитозоле и менее значительно в митохондриях.

На начальных стадиях алкоголизма окисление ацетил-КоА в ЦТК - основной источник энергии для клетки. Избыток ацетил-КоА в составе цитрата выходит из митохондрий, и в цитоплазме начинается синтез жирных кислот. Этот процесс, помимо АТФ, требует участия NADPH, который образуется при окислении глюкозы в пентозофосфатном цикле. Из жирных кислот и глицерол-3-фосфата образуются ТАГ, которые в составе ЛПОНП секретируются в кровь. Повышенная продукция ЛПОНП печенью приводит к гипертриацилглицеролемии. При хроническом алкоголизме снижение синтеза фосфолипидов и белков в печени, в том числе и апобелков, участвующих в формировании ПОНП, вызывает внутриклеточное накопление ТАГ и ожирение печени.

Однако в период острой алкогольной интоксикации, несмотря на наличие большого количества ацетил-КоА, недостаток оксалоацетата снижает скорость образования цитрата. В этих условиях избыток ацетил-КоА идёт на синтез кетоновых тел, которые выходят в кровь. Повышение в крови концентрации лактата, ацетоуксусной кислоты и β-гидроксибутирата служит причиной метаболического ацидоза при алкогольной интоксикации.