Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все углеводы.doc
Скачиваний:
58
Добавлен:
16.11.2018
Размер:
928.77 Кб
Скачать

2.Основы биохимии:а.Уайт, ф.Хендлер,э.Смит, р.Хилл, и.Леман.-м. Книга,

1981,т. 2, 541-608,.с.641-646

3.Наглядная биохимия: Кольман., Рем К.-Г-М. книга 2004г. –с. 50.,154 -157., 160-162., 330.

4.. Биохимические основы ...под. ред. член- корр. РАН Е.С. Северина

М.Медицина,2000.-с.156-158.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1.Мультимедийная презентация

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

№п/п

Перечень учебных вопросов

Количество выделяемого

времени в минутах

1.

Пути обмена глюкозо-6 фосфата. Пентозный цикл

30 мин

2.

Глюконеогенез. . Регуляция уровня глюкозы в крови

30 мин

3.

Биосинтез ГАГ.

30 мин

Всего 90 минут

Введение. Глюкозо-6 фосфат используется клеткой для биосинтеза восстановленной формы NADH*H и биосинтеза сложных соединений, включая углеводы.

Обмен углеводов подвержен сложным механизмам регуляции, в которых участвуют гормоны, метаболиты и коферменты.

1.Пентозофосфатный путь окисления глюкозы обслуживает

восстановительные синтезы в клетке.

Как видно из названия, в этом пути образуются столь необходимые клетке пентозофосфаты. Поскольку образование пентоз сопровождается окислением и отщеплением первого углеродного атома глюкозы, то этот путь называется также апотомическим (apex – вершина).

Пентозофосфатный путь можно разделить 2 части: окислительную и неокислительную. В окислительной части, включающей 3 реакции, образуются НАДФН∙Н+ и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8-ью атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

  • Окислительная часть.

Первая реакция – дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназой с образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН∙Н+ (НАДФ+ кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция – гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции – 6-фосфоглюконат.

глюконолактонгидролаза

6-фосфоглюконолактон 6-фосфоглюконат

Н2О

Третья реакция – дегидрирование и декарбоксилирование 6-фосфоглюко-нолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ+ . В ходе реакции восстанавливается кофермент и отщепляется 1С глюкозы с образованием рибулозо-5-фосфата.

СООН

Н–С–ОН СН2ОН

СО2

Н–С–ОН С=О

│ │

Н–С–ОН 6-фосфоглюконатдегидрогеназа Н–С–ОН

│ (декарбоксилирующая) │

Н–С–ОН Н–С–ОН

│ │

СН2ОРО3Н2 СН2ОРО3Н2

6-фосфоглюконат Рибулозо-5-фосфат

  • Неокислительная часть.

В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы.

Рибулозо-5-фосфат может изомеризоваться (фермент – кетоизомераза) в рибозу-5-фосфат и эпимеризоваться (фермент – епимераза) в ксилулозо-5-фосфат. Далее следуют 2 типа реакций: транскетолазная и трансальдолазная.

Транскетолаза (кофермент – тиаминпирофосфат) отщепляет 2С-фрагмент и переносит его на другие сахара (см. схему). Трансальдолаза способна переносить 3С-фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это – транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фос-фата на рибозо-5-фосфат.

Рибозо-5-фосфат Ксилулозо-5-фосфат

Транскетолаза (ТПФ)

Седогептулозо-7-фосфат 3-ФГА

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА (3-фосфоглицериновый альдегид) образуются эритрозо-4-фосфат и фруктозо-6-фосфат.

Седогептулозо-7-фосфат 3-ФГА

Трансальдолаза

Эритрозо-4-фосфат Фруктозо-6-фосфат

Однако реакция может идти и по другому пути (.6.17). В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Рис.1. Пентозофосфатный (апотомический) путь обмена глюкозы

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА:

Эритрозо-4-фосфат Фруктозо-6-фосфат

Транскетолаза (ТПФ)

Фруктозо-6-фосфат 3-ФГА

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:

6 Глюкозо-6-ф-т + 7Н2О + 12 НАДФ+ 5 Глюкозо-5-ф-т + 6СО2 + 12 НАДФН∙Н+ + Рн

Значение пентозофосфатного пути окисления глюкозы

Ферменты пентозофосфатного пути локализуются в цитоплазме. В тканях, синтезирующих стероиды или жирные кислоты (для чего необходим НАДФН∙Н+), окислительная часть пути протекает весьма интенсивно. К таким тканям относятся: надпочечники, печень, жировая ткань, лактирующая молочная железа. Эритроциты нуждаются в коферменте НАДФН∙Н+ для восстановления глутатиона (трипептид). Совместно с витамином С восстановленный глутатион играет основную роль в предупреждении образования метгемоглобина: глутатион-SH является активной частью глутатионпероксидазы, устраняющей токсическое влияние пероксида водорода и других перекисей, окисляющих железо гемоглобина и нарушающих его кислородтранспортную функцию.

глутатион –S-S-глутатион

НАДФН∙ Н+ Н2О

Глутатионредуктаза Глутатионпероксидаза

НАДФ+ Н2О2

2 глутатион-SH МетНb Hb

витамин С

Рис.2 Значение ПФП

Недостаточность глюкозо-6-фосфатдегидрогеназы является наиболее частым дефектом ферментативных систем эритроцита. При низкой активности этого фермента возникает дефицит НАДФН∙Н+, что ограничивает функцию глутатионредуктазы, т.е. нарушается восстановление глутатиона. Падение концентрации глутатиона-SH влечёт за собой снижение активности глутатионпероксидазы. Это приводит к накоплению продуктов ПОЛ, следствием чего являются метгемоглобинемия и, поскольку избыток перекисных продуктов способен разрушить эритроцитарную мембрану, – гемолитическая анемия

Надо заметить, что НАДФН∙Н+, в отличие от НАДН∙Н+, не участвует в окислительном фосфорилировании, протекающем в митохондриях, и не служит, таким образом, для получения энергии.

Велико значение пентозофосфатного пути как поставщика рибозы-5-фосфата, необходимого для построения мононуклеотидов (АМФ, АДФ, АТФ, ГМФ и т.д.), олигонуклеотидов, коферментов (ФМН, ФАД, НАД, НАДФ), нуклеиновых кислот.

Апотомический путь тесно связан с гликолизом. В зависимости от тех или иных условий оба пути могут переключаться друг на друга, поскольку у них имеются общие метаболиты (например, фруктозо-6-фосфат, 3-ФГА). Однако в отличие от гликолиза в пентозофосфатном пути используется другой кофермент (НАДФ+ вместо НАД+), в нём образуется СО2 (чего нет в гликолизе) и он не обладает энергетической функцией.

Регуляция.

Главными регулируемыми (ключевыми) ферментами пентозофосфатного пути являются 2 дегидрогеназы его окислительной части: глюкозо-6-фрсфатдегидрогеназа и дегидрогеназа 6-фосфоглюконата. Индукторами биосинтеза этих ферментов является инсулин. Активность дегидрогеназ увеличивается при поступлении углеводов в организм и снижается при голодании и диабете. Именно поэтому они считаются адаптивными ферментами

Соседние файлы в предмете Биохимия