Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая Кузнецов.docx
Скачиваний:
2
Добавлен:
15.11.2018
Размер:
352.5 Кб
Скачать

2 Разработка функциональной схемы конкретной лвс

В данном разделе идет обоснование выбора конкретной топологии локальной вычислительной сети для каждого из офисов компании. Почему выгодно использовать ту или иную топологию, их преимущества и недостатки.

Все сети строятся на основе трех базовых топологий: шина, звезда и кольцо. Топология шина использует один передающий канал на базе коаксиального кабеля. Все сетевые компьютеры присоединяются напрямую к шине. На концах кабеля-шины устанавливаются специальные заглушки - "терминаторы". Они необходимы для того, чтобы погасить сигнал после прохождения по шине. К недостаткам топологии "Шина" следует отнести следующее: данные, предаваемые по кабелю, доступны всем подключенным компьютерам; в случае повреждения "шины" вся сеть перестает функционировать. В целях конфиденциальности информации данную топологию лучше не использовать. Рассмотрим другие топологии.

В главном офисе, который расположен в центре города будет использоваться кольцевая топология, во-первых потому, что требуется экономить денежные ресурсы предприятия, во-вторых учитывается простота организации такой топологии. При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо. Прокладка кабелей от одной рабочей станции до другой будет не слишком дорогостоящей, т.к. компьютеры находятся не так далеко друг от друга. Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется, но неисправности в кабельных соединениях локализуются легко.

Главный офис предприятия «Компьютер сервис» располагается в трех кабинетах, в которых находится по три компьютера. На каждый компьютер должны быть установлены: как минимум 2 сетевые платы с разъёмами RJ45, сетевая операционная система. На главный компьютер, который осуществляет доступ в интернет должно быть установлено 3 сетевые карты. Топология данной сети представлена на рисунке 4а.

а б

Рисунок 4 – Топологии сетей

(а – Топология «кольцо», б – Топология «звезда»)

На рисунке 4б изображена топология типа «звезда», которая будет использоваться в офисе основного производства. Данная топология выбрана не просто так. В данном офисе идёт производство по поставке программного обеспечения, и различные сбои повлекут за собой большие потери. Если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет. Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации сравнительно невысокая, если сравнивать с другими топологиями.

В офисе основного производства располагается восемь компьютеров, предназначенных для основной работы специалистов и один компьютер сетевого администратора. Это главный компьютер, т.к. он позволяет управлять всеми компьютерами в данном офисе, следить за их работоспособностью, обеспечивать безопасность и доступ в интернет. В данном случае он получает сетевые настройки от провайдера, далее производит раздачу параметров в определённом алгоритме другим компьютерам. Для этого необходимо поставить коммутатор как минимум с девятью разъёмами. Компьютеры в сети должны иметь как минимум стандартную сетевую карту с разъёмом RJ45 и сетевую операционную систему.

В офисе основного производства будет использована стандартная технология Ethernet, которая хорошо подходит для топологии «звезда».История создания протокола IEEE-802.3 (Ethernet) достаточно любопытна. Первоначальная версия базировалась на алгоритме доступа ALOHA и предназначалась для установления связи между машинами, раскиданными по Гавайским островам. Позднее компания Ксерокс создала систему на основе алгоритма CSMA/CD с быстродействием 2,94Мбит/c. Окончательно принципы сети Ethernet разработаны в 1976 году Меткальфом и Боггсом (фирма Ксерокс). Ethernet совместно со своими скоростными версиями FastEthernet (FE), GigaEthernet (GE) и 10GE занимает в настоящее время, абсолютно лидирующее положение. Единственным недостатком данной сети является отсутствие гарантии времени доступа к среде (и механизмов, обеспечивающих приоритетное обслуживание), что делает сеть малоперспективной для решения технологических задач реального времени. Определенные проблемы иногда создает ограничение на максимальное поле данных, равное ~1500 байт. Выбор длины поля данных диктовался уровнем ошибок (BER) для технологий, существовавших на момент разработки стандарта Ethernet.

Первоначально в качестве среды передачи данных использовался толстый коаксиальный кабель (Z=50 Ом), а подключение к нему выполнялось через специальные устройства (трансиверы). Позднее сети начали строиться на основе тонкого коаксиального кабеля. Но и такое решение было достаточно дорогим. Разработка дешевых широкополосных скрученных пар и соответствующих разъемов открыла перед Ethernet широкие перспективы. Те, кому приходилось работать с коаксиальными кабелями Ethernet, знают, при подсоединении или отсоединении разъема можно получить болезненные удары тока. Для скрученных пар это исключено. Но и эта технология не вечна, скрученные пары мало-помалу уступают свои позиции оптоволоконным кабелям.

Для разного быстродействия Ethernet используются разные схемы кодирования, но алгоритм доступа и формат кадра остается неизменным, что гарантирует программную совместимость.

Не трудно видеть, что все перечисленные физические среды используют последовательный формат передачи информации. К этой разновидности относится и Ethernet (10 Мбит/с ±0,01%). Фирма Ксерокс осуществила разработку протокола Ethernet в 1973 году, а в 1979 году объединение компаний Ксерокс, Интел и DEC (DIX) предоставило документ для стандартизации протокола в IEEE. Предложение с небольшими изменениями было принято комитетом 802.3 в 1983 году. Кадр Ethernet имеет формат, показанный на рисунке 5.1.

Рисунок 5.1 - Формат кадра сетей Ethernet (цифры в верхней части рисунка показывают размер поля в байтах)

Поле преамбула содержит 7 байт 0хАА и служит для стабилизации и синхронизации среды (чередующиеся сигналы CD1 и CD0 при завершающем CD0), далее следует поле SFD (start frame delimiter = 0xab), которое предназначено для выявления начала кадра. Поле EFD (end frame delimiter) задает конец кадра. Поле контрольной суммы (CRC – cyclic redundancy check), также как и преамбула, SFD и EFD, формируются и контролируются на аппаратном уровне. В некоторых модификациях протокола поле efd не используется. Пользователю доступны поля, начиная с адреса получателя и кончая полем информация, включительно. После crc следует межпакетная пауза (IPG – inter packet gap - межпакетный интервал) длиной 9,6 мксек или более. Максимальный размер кадра равен 1518 байт (сюда не включены поля преамбулы, SFD и EFD). Интерфейс просматривает все пакеты, следующие по кабельному сегменту, к которому он подключен, ведь определить, корректен ли принятый пакет и кому он адресован, можно лишь приняв его целиком. Корректность пакета по CRC, по длине и кратности целому числу байт производится после проверки адреса места назначения. Вероятность ошибки передачи при наличии crc контроля составляет ~2-32.

Помимо уже описанных модификаций сетей Ethernet в последнее время получили распространение сети для частот 100 Мбит/с, которые базируются на каналах, построенных из скрученных пар или оптоволоконных кабелей. Оптические связи используются и в обычном 10-мегагерцном Ethernet (10base-FL, стандарт разработан в 1980 году).

Оптоволоконная версия Ethernet привлекательна при объединении сегментов сети, размещенных в различных зданиях, при этом увеличивается надежность сети, так как ослабляется влияние электромагнитных наводок, исключается влияние различия потенциалов земли этих участков сети. Облегчается переход от 10- к 100-мегагерцному Ethernet, также можно использовать уже имеющиеся оптоволоконные каналы, ведь они будут работать и на 100 Мбит/с (возможна реализация сетей со смешанной структурой, где используется как 100- так и 10-мегагерцное оборудование). На программном уровне 10- и 100-МГц Ethernet не различимы. Требования к параметрам опто-волоконных кабелей не зависят от используемого протокола (FDDI, TokenRing, FastEthernet и т.д.) и определяются документом EN 50173 (Europeannorm). Это утверждение не относится к топологии кабельных связей, которые в общем случае зависят от используемого протокола. При работе с оптоволоконными системами необходимы специальные тестеры, способные измерять потери света и отражения методом OTDR (рефлектометрия с использованием метода временных доменов). При пассивной звездообразной схеме длины оптоволоконных сегментов могут достигать 500 метров, а число подключенных ЭВМ - 33. Для передачи сигналов используются многомодовые волокна (MMF) с диаметром ядра 62,5 микрон и клэдинга 125 микрон. Длина волны излучения равна 850 (или 1350) нанометров при ослаблении сигнала в кабельном сегменте не более 12,5 дБ. Обычный кабель имеет ослабление 4-5 дБ/км или даже менее. Оптические разъемы должны соответствовать требования стандарта ISO/IEC BFOC/2,5 и вносить ослабление не более 0,5 - 2,0 дБ. Количество используемых mau в логическом сегменте не должно превышать двух.

Рисунок 5.2 - Схема 10-мегагерцного оптоволоконного Ethernet (для 100 Мбит/с схема с минимальными модификациями аналогична).

На данном рисунке видно, что соединения повторителя с FOMAU является дуплексным, аналогичные возможности предоставляют многие современные переключатели. Полно дуплексное подключение оборудование во многих случаях может обеспечить практическое удвоение скорости обмена и, что возможно более важно, исключить столкновения пакетов. Схема полно дуплексного соединения показана на рисунке 5.3.

Рисунок 5.3 - Схема реализации полно дуплексного канала Ethernet.

При практической реализации локальной сети обычно возникает проблема защиты и заземления. Если этой проблеме не уделить внимание в самом начале она даст о себе знать позднее и обойдется ее решение дороже. Можно выделить три аспекта. Безопасность персонала, работающего с ЭВМ и сетевым оборудованием, устойчивость к внешним наводкам и помехам, а также безопасность самого сетевого оборудования (противостояние грозовым разрядам или резким скачкам в сети переменного тока (обычно ~220 В)). Безопасность персонала обеспечивается тем, что все объекты, за которые может взяться человек, должны иметь равные потенциалы и в любом случае разница потенциалов не должна превышать 50 вольт. При работе с коаксиальным кабелем существуют рекомендации его заземления в одной точке. Возникает вопрос, что делать с заземлением экранов в случае использования экранированных скрученных пар? Этой проблеме посвящена, например, статья в журнале LANlineSpecialJuli/August 2002 страницы 27-32. Следует сразу заметить, что нужно избегать совмещения применения экранированных и неэкранированных скрученных пар в пределах одной системы. Представляется также естественной и разумной зонная концепция. На рисунке 5.4 показана схема защиты. Эта схема содержит защитные выключатели на случай грозы или бросков напряжения (линия L). Буквой N обозначена нулевая (нейтральная) шина, а буквами PE - защитная шина.

Рисунок 5.4 - Схема защиты для случая использования экранированных скрученных пар

Рисунок 5.5 - Зоны заземлений

Земли-экраны соседних зон соединяются только в одной точке. Между зонами могут включаться пограничные устройства фильтрации, предназначенные для снижения уровня шумов и помех. В пределах зоны все устройства должны быть эквипотенциальны. Это достигается за счет подключения к общему экрану.

Следует учитывать, что для сетей Ethernet практически нет ограничений по размеру (за счет использования оптоволоконных переключателей). Сеть может быть локальной, общегородской или даже междугородней.

На рисунке 6 показана схема расположения компьютеров в главном офисе предприятия с технологией Ethernet.

Рисунок 6 - Схема расположения персональных компьютеров в главном офисе с технологией Ethernet