Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ARTISTIC ENAMELLING конспект лекций.doc
Скачиваний:
44
Добавлен:
14.11.2018
Размер:
1.35 Mб
Скачать

2.2. Производство эмали*

Строение стекла. Для эмалей, как и для любого стекла характерно т. н. стекловидное состояние, которое можно определить хаотическим расположением атомов вещества в пространстве, не образующих геометрически правильной упорядоченной пространственной структуры, то есть отсутствием кристаллической решетки. Стекловидное состояние характерно не только для стекол. В этом состоянии находится, например, янтарь, оргстекло (полиметилметакрилат) и другие вещества. Это позволяет называть «эмалью» некоторые полимерные покрытия, имеющие сходные декоративные свойства с классической горячей эмалью на металле или стекле.

Охлаждаясь, жидкое расплавленное вещество переходит либо в кристаллическое, либо в стеклообразное состояние. Свойства анизотропного кристаллического вещества зависят от конфигурации кристаллов и в различных направлениях неодинаковы. Стекловидное вещество, напротив, изотропно, т. е. его свойства во всех направлениях одинаковы.

Кристаллы характеризуются строго фиксированной температурой плавления, выше которой кристаллическое вещество в процессе плавления не нагревается, вся дополнительная подводимая теплота расходуется не на нагрев, а на разрушение кристаллической структуры. При быстром охлаждении некоторые вещества, например кремнезем SiO2 и кремнекислые соли металлов (силикаты) и другие, переходят в стеклообразное состояние. Расплавы этих веществ обладают большой вязкостью и так быстро загустевают, что атомы не успевают построиться в правильную кристаллическую структуру. Подобное хаотическое расположение атомов и молекул – главный признак жидкости или газа. Следовательно, стекло можно назвать твердой (точнее - переохлажденной) жидкостью.

При повторном нагревании стекловидное вещество может перейти в кристаллическое в следствии его неустойчивости. В производстве эмали подобная кристаллизация нежелательна, это является одним из пороков эмали.

Состав и производство эмали.

Основой большинства неорганических стекол и эмалей является окись кремния SiO2, вводимая в шихту в виде кварцевого песка (силикатные стекла). Cтеклообразователями служат также трехокись бора B2O3, фосфорный ангидрид P2O5, оксид свинца PbO и др. Соответственно такие стекла называются борными, свинцовыми и т. д. Кроме того, в состав эмали входят модификаторы (окиси щелочных и щелочноземельных металлов, от которых зависят свойства эмалей), а также красители и пигменты – красящие окислы металлов, окиси алюминия, свинца, соединения фтора и т. д.

В качестве тугоплавкого сырья для изготовления эмалей используют чистый кварцевый песок (двуокись кремния), полевой шпат (алюмосиликат калия, кальция или натрия), магнезит (углекислый магний). Кварц (SiO2) составляет 30-55% большинства художественных эмалей. От содержания кварца в составе эмалей зависят такие механические свойства стекла, как прочность при сжатии, упругость и химическая стойкость. Однако увеличение количества SiO2 в составе шихты значительно увеличивает тугоплавкость эмали (температура плавления чистого кварца 1800 - 2000С). Обычные, в том числе художественные стекла содержат 60 – 75% оксида кремния.

Для снижения температуры плавления в шихту вводят легкоплавкие компоненты – флюсы. Чаще всего используются следующие вещества: борная кислота (H3BO3), бура (Na2B4O7), сода (Na2CO3), известковый шпат (CaCO3), свинцовый сурик (Pb3O4).

Плавление шихты и варку эмалей проводят при температуре в педелах 1000-1400С. время варки – от нескольких десятков минут, до нескольких часов. Столь долгое время необходимо для достижения однородной (гомогенной) структуры вещества. В процессе варки в расплаве шихты протекают сложные химические реакции, сопровождающиеся выделением газов. В промышленных условиях варку эмали производят в специальных плавильных или тигельных печах, в лабораторных условиях – в небольших тиглях.

Перед плавкой все компоненты шихты измельчают и тщательно перемешивают. Как правило, варку эмали проводят в два приема. Сначала варят прозрачное стекло – фритту. Затем фритту измельчают и используют как основу для производства собственно цветных эмалей.

Кварц применяют в виде особо чистого песка, но при этом в расплав все же попадает ряд примесей, особенно окислы железа. С другими естественными шихтовыми материалами в образовавшуюся фритту также попадают некоторые примеси. В расплаве эти материалы взаимодействуют друг с другом в виде окислов.

Образовавшаяся из рассмотренных компонентов фритта прозрачна и служит основой для прозрачных эмалей. При добавлении в стекловидный расплав глушителей понижается его прозрачность и таким образом получают исходный материал для непрозрачных эмалей.

До сих пор эмали составляют на основе экспериментальных данных. Многие факторы невозможно заранее предусмотреть, так как взаимодействие компонентов в процессе плавления приводит к различным отклонениям. Состав эмали зависит от заданных технологических параметров. В таблице 1. дан примерный состав эмалей, выпускаемых промышленностью.

Таблица 1. Исходная рецептура ювелирных эмалей (по данным народного предприятия в г. Радеберг, ГДР) предусматривает следующее соотношение основных компонентов, %:

Кварц

34—55

Бура (борная кислота)

0—12,5

Сода

3 — 8

Поташ

1,5—11

Свинцовый сурик

25—40

Плавиковый шпат

0—2,5

Криолит

1—4

Калиевая селитра

0—2

Мышьяк

0—4

Красящие окислы (окись меди, железа, кобальта, хрома, марганца)

0,1—5,0

Предпосылкой для полного растворения и равномерного распределения всех компонентов в расплаве является тщательная подготовка исходных материалов. Точно взвешенное количество шихтовых материалов тщательно измельчают и смешивают так, чтобы в результате получилась однородная смесь твердых, мелких гранул компонентов. Эмалевую шихту расплавляют в печи до получения стеклообразной массы, которая представляет собой основу будущей эмали.

Температура плавления для различных эмалей находится в пределах От 1000 до 1400 °С. Минимальная температура плавления шихты определяется температурой плавления компонентов. Отсюда следует, что ход сложных реакций в шихте требует определенного времени и не может быть ускорен резким повышением температуры.

Здесь, как и при любом химическом процессе, скорость реакции увеличивается с повышением температуры, но до определенного предела, превышение которого приводит к нежелательным явлениям: слишком большим изменениям состава эмали за счет летучести компонентов.

При изготовлении стекла шихту плавят, затем расплав выдерживают при температуре плавления до тех пор, пока не будут удалены газовые пузырьки и смесь не станет гомогенной. Точно так же поступают при варке эмали: шихту нагревают до температуры плавления, расплав перемешивают и, выдержав необходимое время, быстро охлаждают. Вследствие этого получают застывший расплав в виде твердых частиц стекла с включениями газовых пузырьков. Химические реакции между компонентами в необожженной эмали еще не закончены, и при последующем оплавлении на металлической подложке физико-химические процессы продолжаются до тех пор, пока стеклообразная масса не станет полностью однородной. Процесс варки довольно сложен, так как химические и физические процессы протекают одновременно, влияя друг на друга.

Глушение стекла. Если варят непразрачные (опаковые) эмали, то в стекловидный расплав добавляют глушители, особые глушащие добавки с иными показателами преломления, чем у основы стекла. Свет при прохождении через эмалевую массу отклоняется неравномерно, рассеивается и отражается. Чем больше разница показателей преломления основного стекла и глушителя, тем больше глушащий эффект. Некоторые глушители, растворяясь в жидкой эмалевой массе, при охлаждении выделяются в виде твердых частиц или газов. Мелкие газовые пузырьки или кристаллические частицы отражают свет.

В качестве глушителей могут быть использованы следующие вещества: костяной пепел (широко применялся еще с античных времен, в настоящее время вытеснен другими материалами); двуокись олова (SnO2); двуокись титана (TiO2); плавликовый шпат или фтористый кальций (CaF2); криолит (Na3AlF6).

Окрашивание стекол и эмалей.

Цвет (окраска). Известно, что тела, обладающие избирательным поглощением света в одной или нескольких областях видимого спектра, представляются окрашенными. Тело имеет тот цвет, который оно пропускает или отражает.

Нормальный глаз человека воспринимает колебания с длинами волн примерно от 380 до 760 нм, получая впечатления различных цветов. Весь видимый спектр воспринимается нормальным глазом примерно следующим образом:

Таблица 2. Зависимость цвета, воспринимаемого человеческим зрением, от длины волны электромагнитных колебаний

Фиолетовый

380-450 нм

Синий

450-480 нм

Сине-зеленый

480-500 нм

Зеленый

500-530 нм

Желто-зеленый

530-565 нм

Желтый

565-580 нм

Оранжевый

580-620 нм

Красный

620-760 нм

Если тело имеет наибольшее поглощение в фиолетовой, синей и зеленой областях и минимальное – в длинноволновой части спектра, то его цвет изменяется от желтого до красного. Наоборот, если максимальное поглощение имеет место в длинноволновой, а минимальное – в коротковолновой области спектра, то цвет тела будет меняться от синего до фиолетового. Окраска эмалей также основана на явлении избирательного поглощения в видимой части спектра.

Для придания эмали определенной окраски в шихту для повторной варки вводят некоторое количество (в размере до нескольких процентов от общей массы) специальных красящих компонентов – пигментов и красителей. Существуют два типа окрашивания – ионное и коллоидное.

Ионное окрашивание обусловлено наличием в стекле положительно заряженных ионов некоторых переходных или редкоземельных металлов. Различные ионы одного и того же металла характеризуются различным отношением к окрашиванию стекла. Можно провести аналогию между окрашиванием стекла и водных растворов ионными красителями. Например, водный раствор медного купороса – голубой, пермарганата калия – фиолетовый. Такие же цвета получаются и при введении данных веществ в шихту стекла. В этом случае исходное бесцветное стекло (фритту) можно считать растворителем, а окислы металлов – растворенными пигментами. При смешивании красящих окислов добиваются многочисленных цветовых оттенков, используемых в ювелирных эмалях.

Степень избирательного поглощения, а следовательно, и пропускания цветовых лучей зависят от концентрации ионов в эмали и толщины эмалевого слоя (для прозрачных эмалей). При вторичном нагреве затвердевшей эмалевой массы с ионными красителями окраска почти не изменяется. Эти красители окрашивают стекла и эмали любых составов.

Эмали, окрашенные коллоидными красителями обладают другими свойствами. В этом случае окрашивание обусловлено избирательным рассеиванием цветовых лучей: рассеиваются фиолетовые, синие и голубые лучи (коротковолновое излучение), стекло пропускает лишь желтые, оранжевые и красные лучи. В этих эмалях присутствуют мельчайшие (т. н. коллоидные) частицы таких металлов, как золото, серебро, медь, или же некоторых сульфидов. Размеры коллоидных частиц составляют 10...50 нм. Окраска появляется, когда эти частицы вырастают в стекле до указанного размера. Однако процесс чрезмерного укрупнения частиц может привести к помутнению и заглушению эмали. При резком охлаждении коллоидно – окрашенные эмали получаются бесцветными; окраска возникает лишь при вторичном подогреве затвердевшей эмали (наводке). В результате наводки в эмали протекают процессы выделения частиц красителя. Интенсивность окраски зависит от числа выделившихся коллоидных частиц и от их размеров. Размеры самих коллоидных частиц и расстояний между ними сопоставимы с длинами волн цветовых излучений.

Примером такого окрашивания могут быть некоторые красные транспарантные (прозрачные) ювелирные эмали, в которых в качестве коллоидного красителя присутствуют мельчайшие частицы золота.

Красители и пигменты.**

Синие и голубые эмали получают введением в шихту от 0,02% до 1% окиси кобальта CoO. Для получения оттенков голубого зелено-голубого цвета добавляют 1-2% (масс. доли) окиси меди CuO.

Фиолетовый оттенок получают с помощью добавок окиси марганца Mn2O3. Ионы Mn3+ придают прозрачной эмали пурпурно-фиолетовую окраску. Окись никеля NiO, вводимая в количестве до 3%, окрашивает стекло, содержащее К2О в красновато-фиолетовый цвет.

Если оксид меди CuO вводится в шихту в количестве 2...4%, то цвет эмали становится изумрудно-зеленым. Более теплые оттенки зеленого цвета (без примеси голубого) обусловлены присутствием в составе эмали окиси хрома Cr2O3. Для получения различных голубовато-зеленых оттенков оксиды хрома применяют в сочетании с оксидом меди и оксидами железа FeO и Fe2O3. при этом FeO окрашивает стекло в голубой цвет, а Fe2O3 – в желтый. При сложении этих цветов получаются различные оттенки зеленого (бутылочного) цвета. Применение оксидов железа в качестве красителей художественного стекла и эмали ограничено из-за того, что они являются обычными красителями бутылочного и другого тарного стекла.

Для получения эмалей желтого цвета применяют сульфиды некоторых металлов (сульфид кадмия CdS, сульфид меди CuS, сульфид свинца PbS), а также сульфид железа FeS, в при большой концентрации которого (до нескольких процентов от общей массы шихты) получается интенсивная янтарно-коричневая окраска. Эмали, содержащие сульфиды, являются типичными примерами молекулярно-коллоидного окрашивания стекла. Различные оттенки желтого цвета можно получить используя соединение сурьмы и свинца Pb2Sb4O7 с добавлением ZnO и Al2O3. В свинцовых легкоплавких эмалях (стеклообразователь – PbO) в качестве коллоидного красителя для получения оттенков желтого, оранжевого и красного цвета применяют хромовокислый калий (хромпик) KCr2O. В зависимости от концентрации частиц хромпика получается соответствующий оттенок.

Красные эмали получают также с помощью добавок сульфида кадмия CdS и селенида кадмия CdSe в различных пропорциях. При соотношении CdS:CdSe = 3:1 получается оранжевый цвет. Красные прозрачные эмали различных оттенков от алого по пурпурного называются рубиновыми. Ювелирные рубиновые эмали содержат коллоидно-дисперсное золото (до 0,03%) – результат разложения хлорида золота AuCl3 на элементарное золото.

Коричневые эмали окрашивают смесью окислов железа, цинка и хрома.

Черный цвет получают в результате смешения различных окислов металлов (окись хрома, кобальта, меди с добавками окиси никеля, железа, марганца).

Ниже, в таблице 3. приведены данные по окраске эмалей некоторыми красителями.

Таблица 3. Пигменты и красители для эмалей.

Окраска эмали

Краситель

Желтая

Сульфид кадмия CdS,

соединение сурьмы и свинца Pb2Sb4O7 c добавлением ZnO и Al2O3

Оксид сурьмы Sb2O5 (при увеличении концентрации переходит в охру и коричневый оттенок)

Коричневая

Смесь окислов железа, цинка и хрома

Красная и оранжевая

Смесь сульфида кадмия CdS и селенида кадмия CdSе,

Хромовокислый калий (хромпик) KCr2O

Основной хромат свинца Pb[CrO4]*Pb[OH]2,

Коллоидно-дисперсное золото (до 0,03%)

Синяя

Окись кобальта СоО

Для получения оттенков добавляют окись марганца, двуокись олова, окись алюминия, окись хрома

Зеленая и сине-зеленая

Оксиды меди СuО Сu2О,

Окись хрома Cr2O3, добавки окиси алюминия, кобальта, железа смягчают оттенки

Красно-фиолетовая

Оксиды марганца Мn2О3 МnО

Черная

Смеси окиси хрома, кобальта, меди с добавками окиси железа, никеля, марганца. В большинстве случаев не получается чистого глубокого черного цвета, а, как правило, с коричневым или голубоватым оттенком

Интенсивность окраски при цветном глушении зависит от количества пигмента в эмали, от величины его частиц, а также от степени глушения эмали.

Если пигмент добавляют к заглушенной эмали, то окраска ослабляется. Чем сильнее заглушена эмаль, тем слабее окраска, вызываемая пигментом. Поэтому для получения интенсивной окраски при небольшой добавке пигмента необходимо применять незаглушенные эмали.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]