Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
elektronika.docx
Скачиваний:
18
Добавлен:
13.11.2018
Размер:
212.4 Кб
Скачать

1.физическая природа электронной эмиссии

ЭЛЕКТРОННАЯ ЭМИССИЯ – испускание электронов поверхностью твердого тела или жидкости. Чтобы электрон покинул конденсированную среду в вакууме или газе, должна быть затрачена энергия, которую называют работой выхода. Зависимость потенциальной энергии электрона от координаты на границе эмиттера и вакуума (или иной среды) называют потенциальным барьером. Его и должен преодолеть электрон, выходя из эмиттера.

Поддерживать эмиссию можно при выполнении двух условий. Первое – подвод к электронам энергии, обеспечивающей преодоление потенциального барьера, либо создание такого сильного внешнего поля, что потенциальный барьер делается тонким и становится существенен туннельный эффект (автоэлектронная эмиссия), квантовое проникновение электронов сквозь потенциальный барьер, т.е. эмиссия электронов, имеющих энергию меньше работы выхода. Передача энергии бомбардирующими тело фотонами приводит к фотоэмиссии, бомбардировка электронами вызывает вторичную электронную эмиссию, ионами – ион-электронную эмиссию. Эмиссия может быть вызвана внутренними полями – эмиссия горячих электронов. Все эти механизмы могут действовать и одновременно (например – термоавтоэмиссия, фотоавтоэмиссия).

Второе условие – создание внешнего электрического поля, обеспечивающего увод от тела испускаемых электронов, для этого, в частности, нужно к эмиттеру подвести электроны, чтобы он не заряжался. Если внешнее поле, обеспечивающее увод эмитированных электронов, недостаточно для автоэлектронной эмиссии, но достаточно для понижения потенциального барьера, становится заметен эффект Шоттки – зависимость эмиссии от внешнего поля. В случае, когда эмитирующая поверхность неоднородна и на ней есть «пятна» с различной работой выхода, над ее поверхностью возникает электрическое «поле пятен». Это поле тормозит электроны, вылетающие из участков катода с меньшей, чем у соседних, работой выхода. Внешнее электрическое поле складывается с полем пятен и, возрастая, устраняет тормозящее действие пятен. Вследствие этого эмиссионный ток из неоднородного эмиттера растет при увеличении поля быстрее, чем в случае однородного эмиттера (аномальный эффект Шоттки).

Термоэлектронная эмиссия. В середине 19 в. было известно, что вблизи нагретых твердых тел воздух становится проводником электричества, однако причина этого явления оставалась неясной. В результате проведенных опытов Ю.Эльстер и Г.Гейтель установили, что при пониженном давлении окружающего воздуха раскаленная добела поверхность металла приобретает положительный заряд. Протекание тока в вакууме между накаленным электродом и положительно заряженным электродом было открыто Т.Эдисоном (1884), объяснено испусканием электронов (отрицательно заряженных частиц) Дж.Томсоном (1887), теорию термоэлектронной эмиссии разработал О.Ричардсон (1902, иногда ему приписывается открытие и самого эффекта). Односторонняя проводимость была обнаружена Дж.Флемингом (1904, иногда это приписывается Эдисону), хотя его диод был не вполне вакуумным, а с частичной компенсацией пространственного заряда. Ток термоэлектронной эмиссии определяется температурой катода, (т.е. энергией электронов) и работой выхода. Максимальный ток эмиссии определяется отношением работы выхода к температуре, он называется током насыщения. Температура катода ограничивается, в свою очередь, испарением материала катода (т.е. сроком службы).

Фотоэлектронная эмиссия – испускание электронов твердыми телами и жидкостями под действием электромагнитного излучения (фотонов), при этом количество испускаемых электронов пропорционально интенсивности излучения. Для каждого вещества существует порог – минимальная частота (максимальная длина волны) излучения, ниже которой эмиссия не возникает, максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности. Фотоэмиссия чувствительна к работе выхода поверхности. Увеличения квантового выхода и сдвига порога фотоэмиссии достигают покрытием поверхности металла моноатомным слоем электроположительных атомов Cs (цезия) или Rb (рубидия), снижающих работу выхода для большинства металлов до 1,4–1,7 эв. Фотоэмиссия была открыта Густавом Герцем (1887), обнаружившим, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает пробой. Систематические исследования провели В.Гальвакс, А.Риги, А.Г.Столетов (1885) и показали, что в опыте Герца дело сводится к освобождению зарядов под действием света. То, что это именно электроны, lоказали Ф.Ленард и Дж.Томсон (1898).

Фотоэмиссия из полупроводников и диэлектриков определяется сильным поглощением электромагнитного излучения.

Автоэлектронная эмиссия (полевая эмиссия, электростатическая эмиссия, туннельная эмиссия) – испускание электронов проводящими твердыми и жидкими телами под действием внешнего электрического поля высокой напряженности, ее открыл Р.Вуд (1897) при исследовании вакуумного разряда. Автоэлектронная эмиссия объясняется туннельным эффектом и происходит без затрат энергии на возбуждение электронов, необходимых для электронной эмиссии иных видов. При автоэлектронной эмиссии электроны преодолевают потенциальный барьер, не проходя над ним за счет кинетической энергии теплового движения (как при термоэлектронной эмиссии), а путем туннельного просачивания сквозь барьер, сниженный и суженный электрическим полем.

Автоэмиссия существенно зависит от поля и работы выхода и слабо зависит от температуры. Отбор тока при низких температуpax приводит к нагреванию эмиттера, т.к. уходящие электроны уносят энергию, в среднем меньшую, чем энергия Ферми, с возрастанием температуры нагрев сменяется охлаждением – эффект меняет знак, проходя через «температуру инверсии», соответствующую симметричному относительно уровня Ферми распределению вышедших электронов по полным энергиям. Особенности автоэлектронной эмиссии из полупроводников связаны с проникновением электрического поля в эмиттер, меньшей концентрацией электронов и наличием поверхностных состояний. Максимальные плотности тока, которые могут быть получены в режиме автоэмиссии, ограничены джоулевым разогревом эмиттера протекающим через него током и разрушением эмиттера электрическим полем. В режиме автоэмиссии получают токи порядка 107 А/см2 (на поверхности эмиттера) в стационарном и 109 А/см2 в импульсном режимах. При попытке в стационарном режиме получить больший ток эмиттер разрушается. В импульсном режиме при попытке увеличить ток эмиттер начинает работать в ином режиме, так называемом «режиме взрывной эмиссии».

Сильная зависимость автоэмиссии от работы выхода влечет за собой нестабильность работы автокатода. Работа выхода поверхности зависит как от процессов, происходящих на поверхности в высоком вакууме, так и от влияния недостаточно высокого вакуума: диффузии, миграции, перестройки поверхности, сорбции остаточных газов. Чаще всего применяемый материал – вольфрам – хорошо сорбирует газы. Это вызвало многочисленные попытки применения металлов, не так хорошо сорбирующих газы, например, рения или еще более пассивного углерода, имеющего, однако, большое сопротивление. Предлагалось покрывать металл пленкой углерода. Уменьшать сорбцию газа на поверхности можно постоянным небольшим нагревом автоэмиттера или периодическим сильным импульсным нагревом для очистки поверхности. В целом, для стабильной работы современных автокатодов требуется вакуум, на один-три порядка более высокий, чем тот, который нужен для термокатодов.

Второй после работы выхода параметр, от которого сильно зависит автоэмиссия – напряженность электрического поля на эмиттере, которая, в свою очередь, зависит от среднего поля в приборе (отношение внешнего напряжения к величине зазора) и геометрии эмиттера, ибо для увеличения поля на эмиттере применяются, как правило, «острые» формы – выступы, нити, острия, лезвия, торцы трубок или их системы – пучки нитей, пакеты лезвий, углеродные нанотрубки и т.п. Для отбора относительно больших токов используют многоострийные системы, многоэмиттерные системы на краях пленок и фольг и т.п. То, что в качестве эмиттеров используются острия, имеет следствием непараллельность траекторий электронов, причем компонента скорости, лежащая параллельно плоскости эмитирующего электрода, может быть сравнима с продольной компонентой. Пучок получается расширяющимся, веерным, а если катод многоострийный или многолезвийный, то не ламинарным.

Вторичная электронная эмиссия (открытая Л.Остин и Г.Штарке, 1902) – испускание электронов поверхностью твердого тела при ее бомбардировке электронами. Электроны, бомбардирующие тело (называемые первичными), частично отражаются телом без потери энергии (упруго отраженные электроны), остальные – с потерями энергии (неупругое отражение). Если энергия и импульс получивших энергию электронов оказываются достаточными для преодоления потенциального барьера на поверхности тела, то электроны покидают поверхность тела (вторичные электроны). В тонких пленках вторичная электронная эмиссия наблюдается не только с той поверхности, которая подвергается бомбардировке (эмиссия на отражение), но и с противоположной поверхности (эмиссия на прострел). Количественно вторичная электронная эмиссия характеризуется «коэффициентом вторичной эмиссии» (КВЭ) – отношением тока вторичных электронов к току первичных, коэффициентом упругого и неупругого отражения электронов, а также коэффициентом эмиссии вторичных электронов (отношения токов соответствующих электронов к току первичных). Все коэффициенты зависят как от энергии первичных электронов, так и от угла их падения, химического состава и рельефа поверхности образца. В металлах, где плотность электронов проводимости велика, вероятность того, что образовавшиеся вторичные электроны могут выйти наружу, мала. В диэлектриках с малой концентрацией электронов вероятность выхода вторичных электронов больше. Вероятность выхода электронов зависит от высоты потенциального барьера на поверхности.

2.Двухтактный усилитель низких частот

Двухтактный транзисторный усилитель.

Паразитную ЭДС очень трудно контролировать. Чтобы лучше представлять ситуацию, необходимо понимать устройство обычного двухтактного транзисторного усилителя.

Для обеспечения хороших технических характеристик, большинство двухтактных усилителей изготовливают по топологии операционного усилителя: высокий коэффициент усиления и глубокая обратная связь. Целью такой схемы является уменьшение искажений и увеличение коэффициента демпфирования усилителя.

В принципе, эта концепция очень проста в настройке и, на первый взгляд, очень логична. При использовании нескольких каскадов усиления, входной сигнал сначала усиливается больше, чем это необходимо. Затем сигнал уменьшается до требуемого значения при помощи глубокой обратной связи. Обратная связь постоянно сравнивает усиленный выходной сигнал усилителя с входным сигналом, и при отклонениях производит корректировку. Искажения уменьшаются, а демпфирование увеличивается. Такие усилители отличаются очень хорошими техническими характеристиками. "Покупатели свято верят характеристикам в спецификациях, и очень удивляются, когда у них дома эти характеристики не работают", - продолжает Матиас Руфь. Топология операционного усилителя работает на бумаге. На практике же это приводит к дополнительным искажениям.

Чтобы понять, что происходит, необходимо рассмотреть схему усилителя. Для получения высокого коэффициента усиления сигнала, в операционных усилителях используется несколько последовательных каскадов усиления. Самые современные высококачественные усилители используют до 7 каскадов. Вдобавок, входному сигналу надо пройти не только последовательные каскады усиления, но и несколько параллельных силовых транзисторов, которымы оснащены большинство усилитетелей для достижения большего выходного тока. В некоторых устройствах используют до 20 параллельно подключенных силовых транзисторов.

У такой идеологии есть два отрицательных момента. Во-первых, любой транзистор - даже самой последней модели - будет искажать. Чем больше каскадов, тем больше искажений. А эти искажения не только плюсуются, но еще и умножаются. Это происходит потому, что в каждом каскаде усиливаются искажения предыдущего каскада, и на них накладываются созданные в этом каскаде новые искажения.

Вторая проблема относится к скорости, с которой обратная связь исправляет проблему на выходе. Чем больше каскадов имеет усилитель, тем медленнее распространяется в нем сигнал и тем больше отличается информация на входе и на выходе.

В лабораторных условиях искажения, возникающие при усилении усиления сигнала, могут быть устранены глубокой обратной связью. Но эта компенсация осуществляется с запаздыванием. Коррекция происходит с задержкой, то есть тогда, когда искажения уже исчезли. Таким образом, обратная связь создает новые искажения, которые опять усиливаются и опять исправляются обратной связью и т.д. и т. д.

Эта проблема становится намного серьезней при подключенных колонках, представляющих собой нерезистивную нагрузку. При работе динамиков за счет паразитной ЭДС на усилитель наводятся помехи. Обратная связь обнаруживает эти помехи и пытается компенсировать их. Так как уровень этих помех - в зависимости от частоты и уровня сигнала - меняется, обратная связь постоянно с задержкой вырабатывает сигнал компенсации.

Опытный слушатель достаточно легко различит сравнительно безобидные искажения, созданные усилителем, и искажения, вызванные колонками. В большинстве случаев эта проблема проявляется в механистическом, грубом звучании средних частот и в потере разрешения.

Двухкаскадное усиление

Преимущества этой концепции очевидны. Сигналу надо пройти только через два каскада усиления. Поэтому он очень быстро проходит через усилитель. "Чтобы достичь быстрого прохождения сигнала, нам пришлось сократить схему до минимума. Другого выхода нет. Меньше, в данном случае, означает больше. В каждом каскаде мы минимизировали искажения и увеличили полосу пропускания схемы", - объясняет Матиас Руфь. Полоса воспроизводимых частот в Model 5 превышает 220кГц. Это практически на четыре октавы выше частотной характеристики CD. Даже при использовании дисков SACD и DVD AUDIO нет проблем. Model 5 настолько быстрый, что даже самые высокие частоты вне аудио спектра усиливаются линейно.

Для получения большого коэффициента усиления обычно используют последовательное включение нескольких каскадов. Определим параметры двухкаскадного усилителя напряжения, принципиальная схема которого изображена на рис. 14.

Рис. 14

Транзисторы и внешние элементы каждого каскада имеют одинаковые параметры.

При использовании цепочки из нескольких каскадов с ОЭ в качестве усилителей напряжения следует выполнять условия согласования для ИНУН, а именно: входное сопротивление последующего каскада должно быть больше выходного сопротивления предыдущего и выходное сопротивление последнего каскада должно быть много меньше сопротивления нагрузки. Только в этом случае от цепочки можно получить максимальное усиление, равное произведению собственных коэффициентов передачи каждого каскада.

Полоса пропускания многокаскадного усилителя определяется произведением АЧХ всех каскадов. Если постоянные времени в области нижних и верхних частот каждого каскада цепочки одинаковы, то полоса пропускания цепочки сужается в (2 1/n - 1)1/2раз, где n - число каскадов цепочки. Если какой-либо из каскадов цепочки имеет самую большую нижнюю граничную частоту, а другой - самую малую верхнюю граничную частоту, то полоса частот цепочки будет определяться именно этими каскадами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]