Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 8. Квантовая механика I.docx
Скачиваний:
12
Добавлен:
12.11.2018
Размер:
3.87 Mб
Скачать

§ 3. Уровни энергии

Теперь мы готовы к тому, чтобы вычислить уровни энергии основного состояния водорода, решая гамильтоновы уравнения (10.14). Мы хотим найти энергии стационарных состояний. Это значит, что мы должны отыскать те особые состояния |>, для которых каждая из принадлежащих |> амплитуд Ci=<i|> обладает одной и той же зависимостью от времени, а именно е-t. Тогда состояние будет обладать энергией E=h. Зна­чит, мы ищем совокупность амплитуд, для которых

где четверка коэффициентов аi не зависит от времени. Чтобы увидеть, можем ли мы получить эти амплитуды, подставим (10.17) в (10.14) и посмотрим, что из этого выйдет. Каждое ihdCi/dt в (10.14) перейдет в ECi. И после сокращения на общий экспоненциальный множитель каждое Сi превратится в аi; получим

Это и нужно решить для отыскания a1, а2, а3и а4. Право, очень мило со стороны первого уравнения, что оно не зависит от остальных,— а это значит, что одно решение сразу видно. Если выбрать Е=А, то

a1=1, a2=a3=a4=0

даст решение. (Конечно, если принять все а равными нулю, то это тоже будет решение, но состояния оно не даст!) Будем счи­тать наше первое решение состоянием | I>:

Его энергия

ЕI=А.

Все это немедленно дает ключ ко второму решению, по­лучаемому из последнего уравнения в (10.18):

а1=а2=а3=0, а4=1, Е=А.

Это решение мы назовем состоянием |II>:

|//> = |4> = |-->,(10.20)

ЕII=А.

Дальше пойдет чуть труднее; оставшиеся два уравнения (10.18) переплетены одно с другим. Но мы все это уже дела­ли. Сложив их, получим

Е(а2+ а3) = А(а2+ а3). (10.21)

Вычитая, будем иметь

Окидывая это взглядом и припоминая знакомый нам уже аммиак, мы видим, что здесь есть два решения:

Это смеси состояний |2> и |3>. Обозначая их |III> и |IV> и вставляя для правильной нормировки множитель 1/2, имеем

ЕIII(10.24)

и

Мы нашли четверку стационарных состояний и их энергии. Заметьте, кстати, что наши четыре состояния ортогональны друг другу, так что их тоже можно при желании считать базис­ными состояниями. Задача наша полностью решена.

У трех состояний энергия равна А, а у последнего -ЗА. Среднее равно нулю, а это означает, что когда в (10.5) мы вы­брали Е0=0, то тем самым мы решили отсчитывать все энергии от их среднего значения. Диаграмма уровней энергии основ­ного состояния водорода будет выглядеть так, как на фиг. 10.2.

Фиг. 10.2. Диаграмма уровней энергии основного состояния атомарного водорода.

Различие в энергиях между состоянием |IV> и любым из остальных равно 4A. Атом, который случайно окажется в состоя­ний |I>, может оттуда упасть в состояние |IV> и испустить свет: не оптический свет, потому что энергия очень мала, а микроволновой квант. Или, если осветить водородный газ микроволнами, мы заметим поглощение энергии, оттого что атомы в состоянии |IV> будут ее перехватывать и переходить в одно из высших состояний, но все это только на частоте =4A/h. Эта частота была измерена экспериментально; наилуч­ший результат, полученный сравнительно недавно, таков:

Ошибка составляет только три стомиллиардных! Вероятно, ни одна из фундаментальных физических величин не измерена лучше, чем эта; таково одно из наиболее выдающихся по точности измерений в физике. Теоретики были очень счастливы, когда им удалось вычислить энергию с точностью до 3•10-5; но к этому времени она была измерена с точностью до 2•10-11,т.е. в миллион раз точнее, чем в теории. Так что экспериментаторы идут далеко впереди теоретиков. В теории основного состояния атома водо­рода и вы, и мы находимся в одинаковом положении. Вы ведь тоже можете взять значение А из опыта — и всякому, в конце концов, приходится делать то же самое.

Вы, вероятно, уже слышали раньше о «21-с.м линии» водо­рода. Это и есть длина волны спектральной линии в 1420 Мгц между сверхтонкими состояниями. Излучение с такой длиной волны испускается или поглощается атомарным водородным газом в галактиках. Значит, с помощью радиотелескопов, настроенных на волны 21 см (или примерно на 1420 Мгц), можно наблюдать скорости и расположение сгущений атомарного водорода. Измеряя интенсивность, можно оценить его количе­ство. Измеряя сдвиг в частоте, вызываемый эффектом Допплера, можно выяснить движение газа в галактике. Это одна из вели­ких программ радиоастрономии. Так что мы с вами сейчас ведем речь о чем-то очень реальном, это вовсе не какая-то искусствен­ная задача.