Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 1. Современная наука о природе, закон....docx
Скачиваний:
17
Добавлен:
12.11.2018
Размер:
1.98 Mб
Скачать

§ 3. Вращения

Разобрав вопрос о перенесении начала координат, мы рас­смотрели первую задачу из серии более сложных теорем о сим­метрии физических законов. Следующая теорема утверждает, что и направления координатных осей можно выбрать произ­вольно. Другими словами, если мы сооружаем где-то какое-то устройство и наблюдаем, как оно работает, а затем по соседству соорудим аналогичное устройство, но расположим его под лю­бым углом относительно первого, то будет ли второе устройство работать так же, как и первое? Вообще говоря, нет, если это, например, старые часы-ходики, известные еще нашим дедам. Если маятник ходиков расположен отвесно, они будут вели­колепно идти, но если их повернуть так, чтобы маятник уперся в стенку, верного времени они уже не покажут. Значит, нашу теорему нельзя применить к маятнику, если забыть о силе, ко­торая заставляет его качаться. Если мы все-таки верим в симметрию физических законов относительно вращений, то мы должны сделать какие-то вполне определенные предполо­жения о работе ходиков, например что для их работы важен не только часовой механизм, но и что-то, лежащее за его преде­лами, что-то, что следует обнаружить. Можно также предска­зать, что ходики будут идти по-разному, если они попадут куда-то в другое место по отношению к загадочному пока ис­точнику асимметрии (может быть, это Земля). Так и есть на самом деле. Мы знаем, что ходики на искусственном спутнике, например, вообще остановятся, ибо там отсутствует эффектив­ная сила, а на Марсе скорость их хода будет совсем иной. Маят­никовые часы содержат, помимо механизма, еще нечто вне их. Осознав этот факт, мы увидим, что вместе с ходиками нам придется повернуть и Землю. Но нам, конечно, незачем беспо­коиться – сделать это очень легко. Мы просто подождем минуту или две, и Земля сама повернется, а ходики затикают уже в новом положении так же весело, как и раньше. Пока мы пово­рачиваемся в пространстве, измеряемые нами углы изменяются тоже; эти изменения не причиняют особых беспокойств, по­скольку в новых условиях мы чувствуем себя точно так же, как и в старых. Здесь может скрываться источник ошибки; верно, что в новом, повернутом относительно старого положении законы остаются прежними, но неверно то, что во вращающейся системе координат справедливы те же законы, что и в покоящей­ся. Если проделать достаточно тонкие опыты, то можно уста­новить, что Земля вращается, но ни один из этих опытов не скажет нам, что Земля повернулась. Другими словами, мы не можем при помощи этих опытов установить ориентацию Земли, но можем сказать, что ориентация изменяется.

Обсудим теперь влияние ориентации системы координат на физические законы. Давайте посмотрим, не будут ли нам снова полезны Мик и Джо. Чтобы избежать ненужных сложностей, предположим, что эти молодые люди находятся в одной точке пространства (мы уже показали, что их системы координат можно перемещать). Пусть оси системы координат Мика по­вернуты относительно системы координат Джо на угол , Обе системы координат изображены на фиг. 11.2, где мы ограничи­лись двумя измерениями.

Фиг. 11.2. Две координатные системы, ориентированные по-раз­ному.

Произвольная точка Р снабжается координатами (х, у) в системе Джо и (х', у') в системе Мика. Как и в предыдущем случае, начнем с того, что выразим коор­динаты х' и у' через х, у и . Для этого опустим из Р перпенди­куляры на все четыре координатные оси и проведем АВ пер­пендикулярно PQ. Из чертежа ясно, что х' можно представить как сумму двух отрезков вдоль оси х', а у'– как разность двух отрезков вдоль АВ. Длины этих отрезков выражаются через х, у и 6; мы добавляем еще уравнение для третьей координаты:

х'=хcos+sin,

y'=ycos -xsin, (11.5)

z'=z.

Теперь (мы поступали так и раньше) установим соотношения между силами, измеряемыми двумя наблюдателями. Предполо­жим, что сила F, имеющая (с точки зрения Джо) составляющие Fx и Fy , действует на расположенную в точке Р на фиг. 11.2 частицу массы m. Для простоты сдвинем обе системы коорди­нат так, что начала их переместятся в точку Р, как показано на фиг. 11.3. Мик скажет нам, что сила, по его мнению, имеет составляющие Fx' и Fy' вдоль его осей.

Фиг. 11.3, Составляющие сил в двух системах.

Составляющая Fx, как и Fy, имеет составляющие вдоль обеих осей х' и у'. Чтобы выра­зить Fx' через Fx и Fy , сложим составляющие этих сил вдоль оси х'; точно таким же образом можно выразить и Fy' через Fх и Fy . В результате получим

Fx.=Fxcos+Fysm,

Fy.=Fycos-Fxsm, (11.6)

Fz' = Fz

Интересно отметить случайность, которая в дальнейшем ока­жется очень важной: формулы (11.5) и (11.6) для координат Р и составляющих F соответственно тождественны по форме. Как и раньше, предположим, что законы Ньютона справед­ливы в системе координат Джо и выражаются уравнениями (11.1). Снова возникает вопрос: может ли Мик пользоваться законами Ньютона, будут ли их предписания выполняться в повернутой системе координат? Другими словами, если пред­положить, что уравнения (11.5) и (11.6) дают связь между из­меряемыми величинами, то верно ли, что

Чтобы проверить эти уравнения, вычислим левые и правые части независимо, а затем сравним результаты. Чтобы вычис­лить левые части, умножим уравнения (11.5) на m и продиффе­ренцируем их дважды по времени, считая угол 9 постоянным. Это дает

Вычислим правые части уравнений (11.7), подставив (11.1] в уравнения (11.6). Получаем

Глядите! Правые части уравнений (11.8) и (11.9) тождест­венны; значит, если законы Ньютона верны в одной системе координат, то ими можно пользоваться и в другой системе. Эти рассуждения заставляют нас сделать некоторые важные выводы: во-первых, никто не может утверждать, что избранная им система координат единственна, она может быть, конечно, более удобной при решении частных задач. Например, удобно, но не обязательно взять направление силы тяжести за одну из осей координат. Во-вторых, это означает, что любой механизм, если только он является самостоятельным устройством и об­ладает всем необходимым для создания силы, будет работать одинаково, как бы его ни повернули.