Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 1. Современная наука о природе, закон....docx
Скачиваний:
17
Добавлен:
12.11.2018
Размер:
1.98 Mб
Скачать

§ 4. Расстояние как интеграл

Обсудим теперь обратную проблему. Пусть вместо таблицы расстояний нам дана таблица скоростей в различные моменты времени, начиная с нуля. В табл. 8.4 представлена зависимость скорости падающего шара от времени. Аналогичную таблицу можно составить и для машины, если записывать показания спидометра через каждую минуту или полминуты. Но можно ли, зная скорость машины в любой момент времени, вычислить расстояние, которое ею было пройдено?

Таблица 8.4 скорость падающего шара

Эта задача обратна той, которую мы только что рассмотрели. Как же решить ее, если скорость машины непостоянна, если она то ускоряется до 90 км/час, то замедляется, затем где-то останавливается у свето­фора и т.д.? Сделать это нетрудно. Нужно использовать ту же идею и выражать полное расстояние через бесконечно малые его части. Пусть в первую секунду скорость будет v1 , тогда по формуле s= v1t можно вычислить расстояние, пройденное за эту секунду. В следующую секунду скорость будет несколько другой, хотя, может быть, и близкой к первоначальной, а расстояние, пройденное машиной за вторую секунду, будет равно новой скорости, умноженной на интервал времени (1 сек). Этот процесс можно продолжить дальше, до самого конца пути. В ре­зультате мы получим много маленьких отрезков, которые в сум­ме дадут весь путь. Таким образом, путь является суммой ско­ростей, умноженных на отдельные интервалы времени, или s = vt, где греческая буква  (сигма) означает сумми­рование. Точнее, это будет сумма скоростей в некоторые мо­менты времени, скажем ti , умноженные на t:

(8.6)

причем каждый последующий момент ti+1 находится по пра­вилу ti+1=ti+t. Но расстояние, полученное этим методом, не будет точным, поскольку скорость за время t все же изменяет­ся. Выход из этого положения заключается в том, чтобы брать все меньшие и меньшие интервалы t, т. е. разбивать время дви­жения на все большее число все меньших отрезков. В конце концов мы придем к следующему, теперь уже точному выра­жению для пройденного пути:

(8.7)

Математики придумали для этого предела, как и для диф­ференциала, специальный символ. Значок  превращается в d, напоминая о том, что интервал времени сколь угодно мал, а знак суммирования превращается в ∫ – искаженное большое S, первая буква латинского слова «Summa». Этот значок назван интегралом. Таким образом, мы пишем

s=∫v(t)dt, (8.8)

где v(t) – скорость в момент t. Сама же операция суммирования этих членов называется интегрированием. Она противополож­на операции дифференцирования в том смысле, что производная этого интеграла равна v(t), так что один оператор (d/dt) «уничто­жает» другой (∫). Это дает возможность получать фор­мулы для интегралов путем обращения формул для дифферен­циалов: интеграл от функции, стоящей в правой колонке табл.8.3, будет равен функции, стоящей в левой колонке. Диф­ференцируя все виды функций, вы сами можете составить таблицу интегралов.

Любая функция, заданная в аналитическом виде, т. е. вы­ражающаяся через комбинацию известных нам функций, диф­ференцируется очень просто – вся операция выполняется чис­то алгебраически, и в результате мы всегда получаем какую-то известную функцию. Однако интеграл не от всякой функции можно записать в аналитическом виде. Разумеется, для каж­дого частного интеграла всегда сначала пытаются найти такую функцию, которая, будучи продифференцирована, давала бы функцию, стоящую после знака интеграла (она называется подынтегральной). Однако это не всегда удается сделать. В та­ких случаях интеграл вычисляют просто суммированием, т. е. вычисляют суммы типа (8.6) со все меньшими и меньшими ин­тервалами, пока не получат результат с достаточной точностью.