
- •§4.1. Магнітне поле і його характеристики. Дія магнітного поля на контур зі струмом. Принцип суперпозиції. Класифікація магнетиків
- •§4.2. Закон Біо-Савара-Лапласа. Магнітне поле прямолінійного та колового струмів
- •§4.3. Циркуляція вектора напруженості магнітного поля. Вихровий характер магнітного поля. Поле довгого соленоїда
- •§4.4. Дія магнітного поля на струм; сила Ампера. Магнітна взаємодія струмів
- •§4.5. Сила Лоренца. Рух електричних зарядів у магнітному полі
- •§4.6. Магнітний потік. Теорема Гауса для магнітного поля
- •§4.7. Робота переміщення провідника та контура зі струмом в магнітному полі
- •§4.8. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца
- •§4.9. Індуктивність контура. Явище самоіндукції. Енергія магнітного поля
- •§4.10. Магнітне поле в речовині
- •§4.11. Вихрове електричне поле
- •§4.12. Струми зміщення. Теорема про циркуляцію вектора напруженості магнітного поля (закон повного струму)
- •§4.13. Система рівнянь Максвелла. Електромагнітне поле
- •§5.1. Гармонічні коливання. Диференціальне рівняння гармонічних коливань та його розв’язок. Амплітуда, фаза, частота, період коливань
- •§5.2. Математичний маятник
- •§5.3.Фізичний маятник
- •§5.4. Енергія гармонічних коливань
- •§5.5. Додавання однаково направлених гармонічних коливань однакової частоти
- •§5.6. Додавання взаємно перпендикулярних коливань
- •§5.7. Згасаючі коливання
- •§5.8. Вимушені коливання
- •§5.9. Поняття хвилі, рівняння хвилі. Поздовжні і поперечні хвилі. Фронт хвилі і хвильові поверхні. Довжина хвилі, хвильове число, фазова швидкість
- •§5.10. Хвильове рівняння
- •§5.11. Енергія пружної хвилі
- •§5.12. Групова швидкість і дисперсія хвиль
- •§5.13. Стоячі хвилі
- •§5.14. Електромагнітні коливання
- •§5.15. Вимушені електромагнітні коливання
- •§5.16. Електромагнітні хвилі. Шкала електромагнітних хвиль
- •§5.17. Енергія електромагнітних хвиль. Вектор Умова-Пойнтінга
- •Розділ 6. Оптика
- •§6.1. Елементи геометричної оптики: закони відбивання і заломлення світла; тонкі лінзи
- •§6.2. Монохроматичні світлові хвилі
- •§6.3. Інтерференція світла
- •§6.4. Інтерференція світла на тонких плівках
- •§6.5. Дифракція світла. Принцип Гюйгенса - Френеля. Метод зон Френеля
- •§6.6. Дифракція Фраунгофера
- •§6.7. Дифракція рентгенівських променів
- •§6.8. Поляризація світла. Типи і способи поляризації
- •§6.10. Дисперсія світла
- •§6.11. Квантова природа випромінювання. Теплове випромінювання
- •§6.12. Фотоефект
- •§6.13. Тиск світла
- •§6.14. Ефект Комптона
- •§6.15. Гальмівне рентгенівське випромінювання
- •§7.1. Ядерна модель атома. Борівський воднеподібний атом. Спектральні серії
- •§7.2. Корпускулярно-хвильовий дуалізм матерії; гіпотеза де Бройля. Співвідношення невизначеностей Гайзенберга
- •§7.3. Хвильова функція та її зміст. Рівняння Шрьодінгера
- •§7.4. Частинка в одновимірній прямокутній потенціальній ямі. Проходження частинки через потенціальний бар’єр
- •§7.5. Квантовий лінійний гармонічний осцилятор
- •§7.6. Воднеподібні атоми в квантовій механіці. Квантові числа
- •§7.7. Магнітний момент атомів. Досліди Штерна і Герлаха. Власний момент електрона (спін). Ферміони і бозони
- •§7.8. Принцип Паулі. Стани електронів в складних атомах
- •§7.9. Характеристичне рентгенівське випромінювання
- •§7.10. Енергія молекул. Молекулярні спектри
- •§7.11. Люмінесценція
- •§7.12. Поглинання, спонтанне і вимушене випромінювання. Квантові генератори
- •§7.13. Теплові коливання кристалічної решітки і теплоємність твердих тіл
- •§7.14. Елементи зонної теорії твердих тіл
- •§7.14.2. Розподіл частинок з напівцілим спіном (ферміонів), в т.Ч. І електронів, за енергіями описується квантовою функцією розподілу Фермі-Дірака
- •§7.15. Електропровідність металів і напівпровідників
- •§7.16. Напівпровідникові структури
- •§8.1. Склад і характеристики ядра
- •§8.2. Дефект маси та енергія зв’язку ядра. Ядерні сили
- •§8.3. Радіоактивність
- •§8.4. Ядерні реакції
- •§8.5. Елементарні частинки та фундаментальні взаємодії
§7.9. Характеристичне рентгенівське випромінювання
З
n L J терми
4
3 2 5/2 2D5/2 2 3/2 2D3/2 1 3/2 2P3/2 1 1/2 2P1/2 0 1/2 2S1/2
2 1 3/2 2P3/2 1 1/2 2P1/2 0 1/2 2S1/2
1 0 1/2 2S1/2 Рис.7.16
,
у відповідності з енергетичною діаграмою,
зображеною на рис. 7.16. Таке випромінювання
називається рентгенівським характеристичним;
воно володіє лінійчатим спектром,
характерним для матеріалу антикатода.
Лінії характеристичного випромінювання
накладаються на суцільний спектр
гальмівного випромінювання (рис. 6.33).
Відмітимо,
що на енергетичній діаграмі (мал. 7.16)
зображені терми оболонок з вакансіями,
бо лише в такому атомі можливі переходи
між шарами. При цьому можливі не усякі
переходи, а лише ті, при яких виконуються
наступні правила відбору:
а для
обмежень немає.
Спектральні
лінії характеристичного рентгенівського
випромінювання групуються в серії K,
L,
M,
N
... Зрозуміло, що К-серія
формується при переході електронів на
вакантні місця в К-шарі
(n1 = 1)
з вищих шарів L,
M,
N,
… (n2 = 2,3,4,…),
при цьому випромінюються відповідно
лінії. Аналогічно L-серія
формується при переході електронів на
вакансії L-шару
(
)
з вищих шарів (
).
Для М-серії
,
а для N-серії
.
Важливо зауважити, що енергетична відстань між термами різних шарів значно перевищує відстань між термами одного шару (якщо б на мал. 7.16 був дотриманий масштаб, то терми одного шару практично зливалися б). І тому в першому наближенні дискретністю термів в межах одного шару можна знехтувати і вважати, що енергія визначається лише квантовим числом n. Це дозволяє розраховувати довжини хвиль спектральних ліній в серіях за допомогою формули Мозлі
(7.62)
де R – введена раніше постійна Рідберга (§7.1), а - постійна екранування. Фізичний зміст цієї постійної стає зрозумілим, якщо врахувати, що електрон, який здійснює перехід, перебуває в полі не тільки ядра з зарядом +Ze, як у випадку воднеподібних атомів, але і в полі електронів шару, на який відбувається перехід. Поле цих електронів послаблює (екранує) поле ядра. Зокрема, в К-шарі лише один електрон (другий попередньо вибитий) і тому для К-серії = 1. Для інших серій > 1; наприклад, для L-серії =7,5.
Відмітимо,
що поява ліній К-серії
супроводжується завжди випромінюванням
інших серій, бо заповнення вакансії в
К-шарі
приводить до виникнення вакансій у
вищих шарах. Зрозуміло, що формула Мозлі
є наближеною. При точних вимірюваннях
виявляється, що кожна спектральна лінія
розщеплена на декілька, дуже близьких.
Наприклад,
–лінія
– це дублет з двох ліній:
і
(мал. 7.16).