
- •§4.1. Магнітне поле і його характеристики. Дія магнітного поля на контур зі струмом. Принцип суперпозиції. Класифікація магнетиків
- •§4.2. Закон Біо-Савара-Лапласа. Магнітне поле прямолінійного та колового струмів
- •§4.3. Циркуляція вектора напруженості магнітного поля. Вихровий характер магнітного поля. Поле довгого соленоїда
- •§4.4. Дія магнітного поля на струм; сила Ампера. Магнітна взаємодія струмів
- •§4.5. Сила Лоренца. Рух електричних зарядів у магнітному полі
- •§4.6. Магнітний потік. Теорема Гауса для магнітного поля
- •§4.7. Робота переміщення провідника та контура зі струмом в магнітному полі
- •§4.8. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца
- •§4.9. Індуктивність контура. Явище самоіндукції. Енергія магнітного поля
- •§4.10. Магнітне поле в речовині
- •§4.11. Вихрове електричне поле
- •§4.12. Струми зміщення. Теорема про циркуляцію вектора напруженості магнітного поля (закон повного струму)
- •§4.13. Система рівнянь Максвелла. Електромагнітне поле
- •§5.1. Гармонічні коливання. Диференціальне рівняння гармонічних коливань та його розв’язок. Амплітуда, фаза, частота, період коливань
- •§5.2. Математичний маятник
- •§5.3.Фізичний маятник
- •§5.4. Енергія гармонічних коливань
- •§5.5. Додавання однаково направлених гармонічних коливань однакової частоти
- •§5.6. Додавання взаємно перпендикулярних коливань
- •§5.7. Згасаючі коливання
- •§5.8. Вимушені коливання
- •§5.9. Поняття хвилі, рівняння хвилі. Поздовжні і поперечні хвилі. Фронт хвилі і хвильові поверхні. Довжина хвилі, хвильове число, фазова швидкість
- •§5.10. Хвильове рівняння
- •§5.11. Енергія пружної хвилі
- •§5.12. Групова швидкість і дисперсія хвиль
- •§5.13. Стоячі хвилі
- •§5.14. Електромагнітні коливання
- •§5.15. Вимушені електромагнітні коливання
- •§5.16. Електромагнітні хвилі. Шкала електромагнітних хвиль
- •§5.17. Енергія електромагнітних хвиль. Вектор Умова-Пойнтінга
- •Розділ 6. Оптика
- •§6.1. Елементи геометричної оптики: закони відбивання і заломлення світла; тонкі лінзи
- •§6.2. Монохроматичні світлові хвилі
- •§6.3. Інтерференція світла
- •§6.4. Інтерференція світла на тонких плівках
- •§6.5. Дифракція світла. Принцип Гюйгенса - Френеля. Метод зон Френеля
- •§6.6. Дифракція Фраунгофера
- •§6.7. Дифракція рентгенівських променів
- •§6.8. Поляризація світла. Типи і способи поляризації
- •§6.10. Дисперсія світла
- •§6.11. Квантова природа випромінювання. Теплове випромінювання
- •§6.12. Фотоефект
- •§6.13. Тиск світла
- •§6.14. Ефект Комптона
- •§6.15. Гальмівне рентгенівське випромінювання
- •§7.1. Ядерна модель атома. Борівський воднеподібний атом. Спектральні серії
- •§7.2. Корпускулярно-хвильовий дуалізм матерії; гіпотеза де Бройля. Співвідношення невизначеностей Гайзенберга
- •§7.3. Хвильова функція та її зміст. Рівняння Шрьодінгера
- •§7.4. Частинка в одновимірній прямокутній потенціальній ямі. Проходження частинки через потенціальний бар’єр
- •§7.5. Квантовий лінійний гармонічний осцилятор
- •§7.6. Воднеподібні атоми в квантовій механіці. Квантові числа
- •§7.7. Магнітний момент атомів. Досліди Штерна і Герлаха. Власний момент електрона (спін). Ферміони і бозони
- •§7.8. Принцип Паулі. Стани електронів в складних атомах
- •§7.9. Характеристичне рентгенівське випромінювання
- •§7.10. Енергія молекул. Молекулярні спектри
- •§7.11. Люмінесценція
- •§7.12. Поглинання, спонтанне і вимушене випромінювання. Квантові генератори
- •§7.13. Теплові коливання кристалічної решітки і теплоємність твердих тіл
- •§7.14. Елементи зонної теорії твердих тіл
- •§7.14.2. Розподіл частинок з напівцілим спіном (ферміонів), в т.Ч. І електронів, за енергіями описується квантовою функцією розподілу Фермі-Дірака
- •§7.15. Електропровідність металів і напівпровідників
- •§7.16. Напівпровідникові структури
- •§8.1. Склад і характеристики ядра
- •§8.2. Дефект маси та енергія зв’язку ядра. Ядерні сили
- •§8.3. Радіоактивність
- •§8.4. Ядерні реакції
- •§8.5. Елементарні частинки та фундаментальні взаємодії
ІІ. Лекційний курс
Розділ 4. Магнетизм
§4.1. Магнітне поле і його характеристики. Дія магнітного поля на контур зі струмом. Принцип суперпозиції. Класифікація магнетиків
Більше як 2000 років назад була відкрита властивість магнітної стрілки встановлюватись вздовж земного меридіана. Кінець стрілки, повернутий на північ, дістав назву північного магнітного полюса, а протилежний – південного. Було також відкрито взаємодію полюсів – притягання різнойменних та відштовхування однойменних. В 1820 році Ерстед відкрив явище відхилення магнітної стрілки електричним струмом, а Ампер – взаємодію паралельних струмів; він першим зрозумів, що магнетизм провідників зі струмом і магнетизм постійних магнітів мають однакову природу. Ампер висунув гіпотезу про існування молекулярних мікрострумів (за сучасними уявленнями обумовлених рухом електронів в атомах речовини). Саме мікроструми створюють магнітні поля постійних магнітів. Отже, магнітне поле – це особливий вид матерії, що створюється рухомими електричними зарядами (струмами) і діє на рухомі заряди, провідники зі струмом та постійні магніти.
В
Рис.
4.1
, (4.1)
де
І
– сила струму в контурі, S
– його площа,
- одиничний вектор позитивної нормалі
до площини контура, напрямок якого
визначається за правилом правого гвинта
(свердлика): якщо обертати ручку свердлика
за напрямком струму в контурі, то напрямок
поступального руху його вістря вкаже
напрямок позитивної нормалі. Досліди
показують, що магнітне поле повертає
вміщений в нього контур зі струмом,
встановлюючи його в певному рівноважному
положенні. При відхиленні контура на
90
від рівноважного положення момент сили,
що діє на нього, буде максимальним.
Відношення максимального моменту сили до магнітного моменту контура не залежить від його форми, а характеризує магнітне поле в даному місці простору. Ця характеристика називається магнітною індукцією
. (4.2)
За
напрямок
приймається напрямок магнітного моменту
контура в положенні рівноваги. Відмітимо,
що у випадку довільної орієнтації
контура на нього з боку поля діє момент
сили
(4.3)
або у скалярній формі
, (4.4)
де
α – кут між
та
(рис. 4.1).
В СІ магнітна індукція вимірюється в теслах:
.
Г
Рис.
4.2
Рис. 4.3
в цій точці. Лінії магнітної індукції
проводять з такою густиною, щоб число
ліній, які перетинають нормальну до них
площадку одиничної площі, дорівнювало
в даному місці простору.
На відміну від ліній напруженості електростатичного поля (починаються на додатніх і закінчуються на від’ємних зарядах) лінії магнітної індукції не мають ні початку, ні кінця – вони або охоплюють провідники зі струмом, або ідуть із нескінченності у нескінченість (рис. 4.2; 4.3). Магнітне поле є вихровим, що фізично обумовлено відсутністю у природі «магнітних зарядів».
Магнітне
поле називається однорідним, якщо у
всіх його точках
.
Лінії індукції однорідного поля –
паралельні прямі, проведені з однаковою
густиною. Однорідним є поле всередині
довгого соленоїда (рис. 4.3).
Досвід показує, що для магнітних полів справджується принцип суперпозиції: індукція магнітного поля, створеного кількома струмами, дорівнює векторній сумі індукцій полів, створених в даній точці простору кожним струмом окремо, тобто
. (4.5)
В
Рис.
4.4
У
відсутності зовнішнього магнітного
поля магнітні моменти мікрострумів,
завдяки тепловому руху атомів, орієнтовані
хаотично, і їхні магнітні поля в середньому
скомпенсовані. В зовнішньому магнітному
полі (полі макроструму) магнітні моменти
атомів речовини набувають певної
орієнтації, сумарне поле мікрострумів
стає відмінним від нуля і за принципом
суперпозиції, додається до поля
макроструму. Фізична величина, яка
показує у скільки разів індукція
магнітного поля в середовищі (В)
відрізняється від індукції поля
макроструму
,
називається магнітною
проникністю середовища
або
, (4.6)
– величина
безрозмірна; для вакууму
.
В залежності від величини
всі речовини (магнетики) поділяються
на:
діамагнетики () (Bi,
H2)
парамагнетики () (Al,
Mn, O2)
феромагнетики () (Fe,
Co, Ni, Gd).
Більш детально магнітні властивості речовин обговорюються в §4.10 даного розділу.
Історично
склалось так, що поле макрострумів
характеризується одночасно з
іншою силовою характеристикою –
напруженістю поля
.
В СІ індукція і напруженість вимірюються
в різних одиницях:
,
тому ці дві характеристики співпадають
з точністю до постійного множника:
, (4.7)
де
– магнітна стала.
Зв’язок між індукцією і напруженості магнітного поля в середовищі встановимо, підставляючи (4.7) у (4.6),
. (4.8)