Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Приближающаяся угроза топливного.doc
Скачиваний:
23
Добавлен:
11.11.2018
Размер:
1.1 Mб
Скачать

Энергосмесь будущего

ГЛОБАЛЬНЫЙ ПОТЕНЦИАЛ ВЕТРА оценивается величиной, эквивалентной 1,45х1012 тонн условного топлива.

ВО ВСЕМ МИРЕ БИОМАССА удовлетворяет 14% потребляемой энергии. Ряд стран Африки используют 80–95% биомассы в качестве топлива. В Латинской Америке доля биомассы в виде топлива достигает 30–40%, в Индии – 50%. Эксперты считают, что в 2010 году около 7% топлива в Европе будет «зеленым», то есть биотопливом.

ПРИЛЫВЫ НА ПОБЕРЕЖЬЯХ РОССИИ по своему энергетическому потенциалу составляют одну треть мирового. Высота прилива в Мезенском заливе Белого моря – 10 м, а в Тугурском заливе и Пенжинской губе Охотского моря – 13 м. Природные условия позволяют в Мезенском заливе построить ПЭС мощностью 15 200 МВт, в Тугурском заливе – 10 300 МВт. Самой мощной в мире может стать ПЭС в Пенжинской губе – 87 400 МВт.

ПЕРЕДАЧА ВОДОРОДА на расстояние 100 км стоит на 20% дешевле, чем электричества; при расстоянии 1600 км – в два раза дешевле; а при распределении потребителями – в пять.

ЦИКЛОНЫ И АНТИЦИКЛОНЫ имеют мощность 1010 кВт, у тайфунов мощность немного поменьше – 109 кВт.

В ОДНОМ КУБИЧЕСКОМ МИКРОНЕ КВАНТОВОЙ ПЕНЫ содержится энергии столько, что ее хватило бы на образование многих и многих триллионов галактик!

ВСЕГО ЛИШЬ ТРЕХ МИЛЛИГРАММОВ антивещества, используемого в качестве ракетного топлива, хватит для полета межпланетного корабля на Марс.

ПОЧТИ ВСЯ МАССА, бросаемого в черную дыру гипотетического груза, согласно современным физическим представлениям. превратилась бы в энергию.

АННИГИЛЯЦИЯ ОДНОГО ГРАММА вещества с антивеществом эквивалентна взрыву атомной бомбы мощностью в 10 килотонн.

В 2002 ГОДУ В CERN смогли получить более 50 тыс. атомов антиводорода.

КАЖДУЮ МИНУТУ ВОДЯНОЙ ПАР отдает атмосфере Земли чудовищно огромное количество энергии – 2,2х1010 Джоулей. Столько энергии могли бы выработать 40 миллионов электростанций, по миллиону киловатт каждая.

СРЕДНИЙ РАСХОД ВОДЫ ТЕЧЕНИЯ ГОЛЬФСТРИМ во Флоридском проливе составляет 25 млн. кубометров в секунду и превышает суммарный расход воды во всех реках земного шара в 20 раз. Мощность Гольфстрима в этом районе оценивается в 50 000 МВт. Однако лишь часть – до 10% – этой мощности можно направить на генерирование электроэнергии.

(http://www.enecsis.ru/articles/art_energosmes.htm)

ГлавнаяТеоретические сведенияЭнергия океанаЭнергия приливов и отливов

Энергия приливов и отливов

Автор: Energy | 08 Мая 2010

Очень мощным источником энергии являются приливы и отливы. Если верить цифрам, они могут дать человечеству около 70 миллионов миллиардов кВт/ч в год. Если сравнивать, то это примерно столько энергии, сколько можно получить из всех разведанных запасов бурого и каменного угля. В 1977г. вся экономика СССР базировалась на 1150 миллиардах кВт/ч, экономика США - на 200 миллиардах кВт/ч. Так что, в теории, только приливы и отливы могли обеспечить энергетическое процветание 6000 СССР, но это сухие цифры не имеющие ничего общего с реальностью.

Технология гидроэлектростанций, основанных на приливах и отливах, досконально проработаны в инженерном плане, многие варианты уже опробованы в некоторых странах, даже в Кольском полуострове. Выдвинута даже оптимальная стратегия использования такой энергии: во время приливов накапливать воду в водохранилищах, а во время максимальной нагрузки на энергодобывающую сеть, разгружать ее, используя энергию, накопленную при приливе.

В наше время приливные электростанции, конечно же, значительно уступают тепловой энергетике, ведь легче получить коротко-срочную прибыль, закупив дешевую нефть в странах третьего мира. Однако приливная энергия обладает всеми качествами, которые помогут ей в будущем стать одной из самых важных составляющих мировой энергетики.

Чтобы построить ПЭС даже в самых приспособленных для этого местах, где уровень воды колеблется от 1 до 16 метров, нужны десятилетия. Но все-таки ПЭС должны потихоньку отвоевывать долю мировой добычи энергии.

Самая первая ПЭС, имеющая мощность 240 МВт, была построена в 1966 г. в устье реки Ранс во Франции, эта река впадает в пролив Ла-Манш, средний показатель перепадов уровня воды там составляет 8.4 м. Хоть она и обошлась стране в 2.5 раза дороже, чем строительство гидроэлетространции такой же мощности, сразу после начала ее эксплуатации стала очевидна ее экономическая выгодность. В настоящее время Французская ПЭС используется и приносит энергию в энергосистему страны.

Созданы проекты крупнейших ПЭС: мощностью 4000 МВт - Мезенская на Белом море, и Кольская - мощностью 330 МВт. В будущем планируется использовать большой энергетический потенциал Охотского моря, там приливы достигаю почти 13 м.

Очень хорошие предпосылки для распространения и развития добычи энергии из приливов дает геликоидная турбина Горлова. С ее помощью можно строить приливные электростанции и добывать энергию не сооружая плотины - это в разы уменьшает издержки на строительство.

(http://energycraft.ru/Energiya-okeana/2010-05-08-18-17-16.html)

Выгодность энергии прилива

Мировая энергетика располагает позитивным опытом эксплуатации приливных электростанций. Ведь принцип работы ПЭС во многом схож с гидростанциями. Однако для их работы не требуется создания водохранилищ – плотины, внутри которых устанавливаются турбины, строятся на входах в заливы морей и океанов. От гидростанций приливные отличает и низкий напор, вследствие чего турбины ПЭС имеют особую конструкцию.

В СССР экспериментами в области приливной энергетики занимался академик Лев Бернштейн. Под его руководством в 1968 году на побережье Баренцева моря в Кислой губе была построена экспериментальная приливная станция мощностью 400 кВт. Это была вторая приливная станция в мире – после французской Ля Ранс. Всего в мире существует не более 10 приливных станций, хотя самая крупная из них – Ля Ранс – с установленной мощностью в 240 МВт. Французская ПЭС находится в устье реки Ранс в области Бретань и сооружена в 1966 году. Перепад высот прилива и отлива составляет от 12 до 18 метров. Работают 24 турбины, которые действуют в среднем 2200 часов в год. Но в мире не так уж много мест, где было бы возможно строить ПЭС. Для постройки такого объекта перепад высот приливов и отливов должен составлять не менее пяти метров.

По сравнению с обычной ГЭС ПЭС имеет ряд преимуществ. Помимо отсутствия необходимости создания водохранилища выработка ПЭС не зависит от водности года. Приливы и отливы, сменяя друг друга, имеют постоянную для каждого месяца энергию. Привлекательны приливные электростанции и тем, что капитальные вложения на их строительство не превышают расходов на сооружение гидроэлектростанций.

Конечно, мощность ПЭС зависит от силы волны. На атлантическом побережье на каждый метр прибрежной линии приходится 70 кВт волновой мощности. Эти параметры измерены на побережьях Ирландии, Исландии, Норвегии. В Испании и Португалии мощность волны достигает 50 кВт, а в районе Гибралтара уже только 30 кВт. На североморском побережье Германии она составляет 20 кВт. В самом Старом Свете пока известны всего 100 с лишним мест, где можно получать электроэнергию из морских течений. Согласно первым предварительным научным исследованиям, потенциал ПЭС в Европе может составить 12 000 МВт.

Российская школа, занимающаяся проблемами ПЭС, насчитывает шесть десятилетий. Так, выполненный на Охотском море проект Пенжинской ПЭС мощностью 87 ГВт может поставлять энергию в районы Юго-Восточной Азии, испытывающие дефицит в энергии. На Белом море проектируется Мезенская ПЭС, энергию которой предполагается направлять в Западную Европу по объединенной энергосистеме «Восток–Запад». Приливная электростанция в Тугурском заливе на севере Хабаровского края, по мнению главы РАО «ЕЭС России» Анатолия Чубайса, может стать мощнейшей станцией с параметрами, которых в мире не существует. Ведь в Тугурском заливе «самые высокие в стране возможности по уровню морских приливов, достигающих более 15 метров».

Препоны на пути ПЭС

Главными препятствиями широкого развития приливной энергетики в мире являются конструкция турбины и стоимость строительства ПЭС. Турбины, рассчитанные на работу в двух направлениях (прилив и отлив), оказались технически сложными и чрезвычайно дорогостоящими в производстве. Сам процесс строительства ПЭС – на воде, вдали от берегов – также оказался весьма затратным.

Российским ученым и инженерам ОАО «ГидроОГК» удалось создать эффективную (названную ортогональной) турбину, особенность которой состоит в том, что во время приливов и отливов направление ее вращения не меняется. Это позволило радикально упростить конструкцию турбины и, как следствие, снизить ее стоимость. Экспериментальный образец ортогональной турбины диаметром 2,5 метра был изготовлен в конце 2004 года на заводе «Севмаш». В течение 2005–2006 годов проходили его систематические испытания. Результаты испытаний показали высокую эффективность ортогональной турбины – КПД составил порядка 63%, что в полтора раза выше, чем у зарубежных аналогов.

Еще одно российское ноу-хау – наплавной метод строительства приливных станций, при котором все самые сложные работы по сборке агрегатов выполняются в промышленных центрах, а готовые наплавные блоки буксируются по воде к месту установки. Впервые он был применен при строительстве Кислогубской ПЭС. Наплавной способ строительства позволяет на 30–40% снизить стоимость работ.

В 2006 году по заказу ОАО «ГидроОГК» на заводе «Севмаш» был изготовлен экспериментальный модуль-блок приливной станции с ортогональным гидроагрегатом мощностью 1,5 МВт. В начале текущего года он был отбуксирован в Кислую Губу и установлен в проектное положение в створе Кислогубской ПЭС. Как рассказал представитель «ГидроОГК» Андрей Петрушинин, сейчас проходят испытания этого блока в натурных условиях. В программу испытаний входят энергетические, нагрузочные и испытания в переходных процессах. Цель – подтвердить правильность принятых инженерно-технических решений по конструкциям агрегатов и наплавных блоков ПЭС, а также верность выбранных материалов. Известно, что морская среда очень агрессивна по отношению к металлу, который со временем может подвергнуться коррозии.

В «ГидроОГК» рассчитывают завершить испытания экспериментального модуль-блока к январю 2008 года. «Сейчас для нас главное, чтобы оправдались все наши технические решения и выбор материалов, – рассказывает Петрушинин. – В настоящее время у компании уже есть несколько проектов строительства приливных станций. Самые мощные из них – до 3–4 ГВт каждая – проектируется в Мезенском заливе Архангельской области и в Тугурском заливе Хабаровского края. Но до того, как приступить к реализации этих мегапроектов, нам необходимо будет отработать технологию строительства современных ПЭС на менее мощных станциях в 100–200 МВт».

В целом же, по оценкам «ГидроОГК», за счет энергии приливов в России можно получать до 20% всей потребляемой энергии.

(http://www.ng.ru/energy/2007-08-14/15_potencial.html)