Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
цитология лекции.docx
Скачиваний:
32
Добавлен:
10.11.2018
Размер:
449.53 Кб
Скачать

4.2.4.Клеточные оболочки бактерий

Опорным каркасом клеточной стенки бактерий и синезеленых водорослей является однородный полимер - пептидогликан или муреин, образующий жесткий каркас вокруг бактериальной клетки. Каркас получил название муреинового мешка. Основу муреинового мешка составляет сеть параллельных полисахаридных цепей, построенных из чередующихся дисахаридов (ацетилглюкозамин, соединенный с ацетилмурамовой кислотой), связанных многочисленными пептидными поперечными связями (рис. 161). Основу пептидной части муреина составляют тетрапептиды, образованные различными аминокислотами.

Бактериальная стенка составляет до 20-30% от сухого веса бактерии.

Клеточная стенка грамположительных бактерий обладает большой жесткостью, ее муреиновая сеть многослойна.

Стенки грамотрицательных бактерий содержат однослойную муреиновую сеть, составляющую 12% сухой массы стенки. Периферия грамотрицательных бактерий содержит наружную мембрану, затем однослойную муреиновую сеть, ниже нее расположена плазматическая мембрана (рис. 162). Наружная мембрана обеспечивает структурную целостность клетки, служит барьером, ограничивающим свободный доступ разных веществ к плазматической мембране. На ней также могут располагаться рецепторы для бактериофагов. Она содержит белки-порины, которые участвуют в переносе многих низкомолекулярных веществ. Одна из функций этих белков - формирование в мембране гидрофильных пор, через которые происходит диффузия молекул, не более 900 дальтон. Через поры проходят свободно сахара, аминокислоты, небольшие олигосахариды и пептиды. Поры образованы разными поринами, обладают разной проницаемостью.

Между внешней липопротеидной мембраной бактериальной стенки и плазматической мембраной лежит периплазматическое пространство или периплазма. Ее толщина составляет около 10 нм, она содержит тонкий (1-3 нм) муреиновый слой и раствор, содержащий гидролитические ферменты и транспортные белки. Из-за наличия гидролаз иногда периплазму рассматривают как аналог лизосомного компартмента эукариот. Периплазматические транспортные белки связывают и переносят сахара, аминокислоты и др. от внешней мембраны к плазмолемме.

Предшественники стенок бактерий синтезируются внутри клетки, сборка стенок происходит снаружи от плазматической мембраны.

4.3. Вакуолярная система внутриклеточного транспорта

Вакуолярная система, состоящая из одномембранных органелл (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, эндосомы, секреторные вакуоли) выполняет функции синтеза, перестройки (модификации), сортировки и выведения (экспорта) из клетки биополимеров, а также функции синтеза мембран этой системы и плазматической мембраны.

Синтез основной массы клеточных белков протекает на полисомах в цитозоле после которого они направляются строго по своим внутриклеточным адресам, так как разные по назначению белки имеют «сигнальные» последовательности аминокислот или метки, по которым разные белки распределяются в клетке. Например, ядерные белки имеют NLS-сигнальную последовательность, белки митохондрий имеют свою и т.д. Общим для всех белков является синтез в цитозоле, и затем посттрансляционный перенос по адресам с помощью внутриклеточных белковых комплексов.

Белки на экспорт и белки мембран синтезируются на рибосомах, расположенных на мембранах эндоплазматического ретикулума и попадают внутрь вакуолей котрансляционно и затем уже внутри вакуолей, или в составе мембран вакуолей транспортируются внутри клетки.

Общая схема функционирования вакуолярной системы. Отличительной чертой вакуолярной системы является то, что синтезированные полимеры и продукты их превращений отделены от собственно цитоплазмы, от цитозоля, и становятся изолированными от цитозольных ферментов. Такое разобщение очень важно для одновременного протекания в клетке многих синтетических процессов.

Для всей вакуолярной системы характерна кооперативность ее функционирования, взаимосвязь и последовательность этапов образования, перестройки, транспорта и экспорта синтезированных белков. Общая схема функционирования вакуолярной системы заключается в следующем.

Гранулярный эндоплазматический ретикулум обеспечивает котрансляционный синтез растворимых внутривакуолярных белков (секреторные белки, гидролазы лизосом и др.) и синтез нерастворимых мембранных белков вакуолярной системы, первичную модификацию растворимых и нерастворимых (мембранных) белков, их соединение с олигосахаридами и образование гликопротеидов, синтез мембранных липидов и их встраивание в мембрану.

Вакуоли, содержащие новообразованные продукты ЭР отделяются от него и переходят в цис-зону аппарата Гольджи (ЭР-АГ комплекс).

В цис-зоне аппарата Гольджи происходит вторичная модификация гликопротеидов, синтез полисахаридов (гемицеллюлоза растений) и гексозаминогликанов. Затем в промежуточной зоне аппарата Гольджи: продолжается дополнительная модификация гликопротеидов, трансгликозилирование.

В транс-Гольджи сети происходит сортировка секреторных и лизосомных белков, отделяются вакуоли.

Экспортные белки выделяются из клетки в составе вакуолей.

Первичные лизосомы с гидролазами отделяются от аппарата Гольджи, сливаются сливаются с пиноцитозными вакуолями и образуются вторичные лизосомы.

Гладкий эндоплазматический ретикулум обеспечивает синтез и конденсацию липидов, депонирование ионов Ca2+, синтез и ресорбцию гликогена и др.