Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
240626_97826_kursovaya_rabota_raschet_gazovoy_h....doc
Скачиваний:
17
Добавлен:
09.11.2018
Размер:
1.48 Mб
Скачать

Принцип действия и классификация машин

Криогенные газовые машины (КГМ) относятся к классу поршневых. Характерной особенностью КГМ является то, что изменяющиеся объемы полостей расширения и сжатия постоянно гидравлически связаны с объемами теплообменных аппаратов. Утверждение о том, что теплообменные аппараты расположены в «мертвых» объемах машин, нельзя считать корректным, так как протекающие в аппаратах процессы отличны от процессов в мертвых объемах традиционных поршневых машин.

В теплообменных аппаратах КГМ производится регенерация теплоты, подвод и отвод теплоты от рабочего газа машины к внешним тепловым источникам. Блок теплообменных аппаратов КГМ, как правило, состоит из одного или нескольких аппаратов внешнего теплообмена (АВТ) и одного или нескольких регенераторов. Аппараты внешнего теплообмена предназначены для передачи теплоты от среды с более высокой температурой к среде с низкой температурой, т. е. для обеспечения связи рабочего газа машины с внешними тепловыми источниками.

Регенератор в КГМ является обязательным элементом и выполняет роль своеобразного «теплового аккумулятора», который попеременно получает и отдает теплоту протекающему через аппарат рабочему газу. Этот «тепловой аккумулятор» обладает специфическими свойствами: значительным перепадом температур на концах, зависящим от температур внешних тепловых источников; большой тепловой нагрузкой; высокой эффективностью передачи теплоты.

Принцип действия криогенной газовой машины рассмотрим на примере одного из вариантов конструкции машины Стерлинга, схема которой приведена на рис. 2. Машина имеет цилиндр с двумя противоположно расположенными поршнями 1 и 7. Между поршнями расположены теплообменник нагрузки 3 («мертвый» объем Vтн, температура стенки Тх), регенератор 4 («мертвый» объем Vр, среднемассовая температура газа в объеме Тр) и холодильник 5 («мертвый» объем Vх, температура стенки Тот близкая к условиям окружающей среды Т0). Объем 2, расположенный между торцом левого поршня 1 и теплообменником нагрузки 3, называют полостью расширения или детандерной полостью Vд. Объем 6 между холодильником 5 и торцом правого поршня 7 называют полостью сжатия или компрессорной полостью (Vк), При перемещении поршней 1 и 7 объемы рабочих полостей Vд. и Vк изменяются от своих минимальных значений до, соответственно, максимальных — Vод. и Vок. При этом газ постоянно течет в том или другом направлении в холодильнике 5, регенераторе 4 и теплообменнике нагрузки 3. В первом аппарате газ непрерывно взаимодействует с тепловым источником с температурой Тот, во втором — с насадкой регенератора с промежуточными температурами (температурный градиент между торцевыми поверхностями регенератора равен Тот — Тх) и в третьем — с тепловым источником с температурой Тх.

Рисунок 2 – Принципиальная схема машины Стирлинга и реализация рабочего цикла:

а — положение поршней в основных точках цикла;

б — диаграмма «время—перемещение — объем»;

в р—V диаграмма цикла

Рассмотрим рабочий цикл машины. Предположим, что в начале цикла компрессорный и детандерный поршни 7 и 1 находятся в крайнем правом положении (фаза I); в этом случае рабочее тело машины находится в основном в компрессорной полости 6, а также в блоке теплообменных аппаратов (рис. 2, а, б).

Его объем максимальный, давление соответствует точке 1 на р—V диаграмме (рис. 2, в). Во время процесса сжатия 1—2 компрессорный поршень 7 движется влево, а детандерный поршень 1 остается неподвижным — фаза II на диаграмме перемещения (рис. 2, б). Рабочее тело сжимается в компрессорной полости 6, давление газа увеличивается, а теплота сжатия Qк отводится от газа в холодильнике 5 в окружающую среду.

В процессе 2—3 оба поршня движутся одновременно таким образом, что объем между ними остается постоянным (фаза II). При переталкивании из компрессорной в детандерную полость рабочий газ охлаждается в холодильнике 5 и далее, непрерывно взаимодействуя с пористой теплоемкой насадкой регенератора, охлаждается от Тот до Тх. Постепенное уменьшение температуры газа при прохождении его через насадку при постоянном суммарном объеме вызывает уменьшение его давления (процесс 2— 3 на рис. 2, в). Компрессорный поршень 7 достигает своего левого крайнего положения.

В процессе расширения 3—4 детандерный поршень 1 продолжает свое движение влево — объем расширительной полости Vд увеличивается и достигает максимальной величины Vод; компрессорный поршень остается неподвижным в левой крайней точке вблизи холодильника (фаза III). С увеличением объема в системе происходит уменьшение давления и температуры рабочего газа.

Замыкающим процессом цикла является процесс 4—1, во время которого поршни синхронно перемещаются вправо, переталкивая рабочий газ из полости расширения в компрессорную полость при постоянном объеме — фаза IV. При прохождении газа через теплообменник нагрузки 3 к нему подводится теплота Qх от внешнего теплового источника Тх. При прохождении через пористую насадку регенератора рабочий газ нагревается, отнимая теплоту, аккумулированную насадкой во время процесса 2—3, и достигает уровня температур Тот.

Все известные в настоящее время КГМ принципиально состоят из двух узлов. В табл. 1Ф машины разделены на группы в зависимости от типа узла, выполняющего роль компрессора, и на ряды в зависимости от типа узла, являющегося генератором холода (детандером). Первая буква в обозначении машин соответствует названию группы, вторая — названию ряда. Многоступенчатые машины имеют две или три детандерные полости, объемы которых синхронно меняются в течение цикла, т. е. такие полости, по существу, всегда можно заменить одной эквивалентной полостью. В связи с этим классификация машин по числу ступеней охлаждения не может иметь принципиального значения. В предлагаемой классификации многоступенчатые машины маркируются теми же буквами и цифрой, указывающей число ступеней. Например, двухступенчатую КГМ Стирлинга обозначают ПВ-2, а трехступенчатую КГМ Гиффорда—Мак-Магона — НВ-3.

Таблица 1Ф - Классификация криогенных газовых машин

Группа

Ряд

П

В

К

Н

НП

НВ

НК

П

ПП

ПВ

ПК

В

ВП

ВВ

ВК

К

КП

КВ

КК