- •Русаков Алексей Михайлович
- •Лекции по дисциплине «Дискретная математика»
- •Введение.
- •Теория множеств.
- •Понятие множества. Операции над множествами.
- •Определение.
- •Определение.
- •Определение.
- •Пример.
- •Свойства операций сложения и пересечения множеств.
- •Определение.
- •Замечание.
- •Примеры.
- •Счётные множества. Теорема Кантора.
- •Определение.
- •Примеры счётных множеств.
- •Замечания.
- •Теорема.
- •Доказательство:
- •Задачи для самостоятельного решения.
- •Решите задачи № 1.30 1.39 с использованием диаграммы Эйлера-Венна.
- •Бинарные отношения в теории графов.
- •Например:
- •Матрицы смежности и инцидентности.
- •Пример.
- •Маршруты, цепи и простые цепи.
- •Определение
- •Расстояние и протяжённость в графе.
- •Деревья.
- •Примеры:
- •Например:
- •Помеченные графы. Перечисление помеченных деревьев.
- •Пример:
- •Теорема Келли.
- •Задача о кратчайшем соединении.
- •Задача о кратчайших путях.
- •Эйлеровы цепи, критерий Эйлеровости. Задача о Кёнигсбергских мостах.
- •Доказательство:
- •Достаточность.
- •Индуктивный переход.
- •Гамильтовы циклы.
- •Пример:
- •Примеры задач и упражнений.
- •Решение.
- •Задачи для самостоятельного решения.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение группы.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение и способы описания формальных грамматик.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Теория автоматов.
- •Основные понятия теории автоматов.
- •Определение.
- •Способы задания автоматов. Таблица переходов.
- •Определение.
- •Определение.
- •Способы задания автоматов. Граф автомата.
- •Определение.
- •Способы задания автоматов. Матрица переходов и выходов. Определение.
- •Машины Тьюринга и конечные автоматы. Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Машины Тьюринга с двумя выходами.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Автоматы с магазинной памятью и бесконтекстные языки.
- •Определение.
- •Определение.
- •Модель дискретного преобразователя Глушкова в. М. Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Понятие об абстрактном автомате и индуцируемом им отображении. Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Определение.
- •Автоматные отображения и события. Определение.
- •Определение.
- •Определение.
- •Определение.
- •Теорема.
- •Регулярные языки и конечные автоматы. Определение.
- •Определение.
- •Определение.
- •Определение.
- •Правила подчинения мест в регулярных выражениях.
- •Определение.
- •Определение.
- •Правила построения основного алгоритма синтеза конечных автоматов.
- •Пример.
- •Автомат Мили.
- •Определение.
- •Определение.
- •Автомат Мура.
- •Определение.
- •Определение.
- •Теория булевых функций.
- •Связь булевых функций и схем из функциональных элементов и контактных схем. Определение.
- •Замечания.
- •Теорема.
- •Доказательство:
- •Замечание.
- •Теорема. (Формулы разложения Клода Шеннона.)
- •Доказательство:
- •Замечания.
- •Основные свойства булевых функций. Замечание.
- •Определение.
- •Примеры задач и упражнений. Пример 1
- •Доказательство
- •Задачи для самостоятельного решения.
- •Элементы комбинаторики.
- •Основные понятия комбинаторики. Определение.
- •Определение.
- •Доказательство.
- •Теорема – правило включения-исключения.
- •Доказательство.
- •Доказательство.
- •8.2. Формулировка задания.
- •Определение.
- •Пример.
- •Переходы можно представить также с помощью таблицы и схематически:
- •Определение.
- •Последовательность выполнения.
- •Методический пример.
- •Контрольная распечатка.
- •Замечания.
- •Отчет по практической работе.
- •Контрольные вопросы
- •Варианты заданий.
- •Домашняя работа №1. По всей теории
- •Домашняя работа №2. Способы задания графов
- •8.03.2. Правила регулярного выражения.
- •Установка необходимого программного обеспечения.
- •Замечания.
- •Методический пример.
- •Контрольная распечатка.
- •Отчет по практической работе.
- •Контрольные вопросы.
- •Варианты заданий.
- •Дополнительные материалы.
- •Биография Георга Кантора (основатель теории множеств).
- •Город Калининград (Кёнигсберг).
- •Список литературы.
-
Автомат Мура.
Автомат Мура получил название по имени впервые исследовавшего эту модель американского ученого E. F. Moore.
Определение.
Автоматом Мура называется автомат, выходные слова которого зависят только от внутренних состояний автомата и не зависят непосредственно от входных слов.
Определение.
Закон функционирования автомата Мура задается уравнениями:
![]()
![]()
Так как в автомате Мура выходной сигнал зависит только от внутреннего состояния автомата и не зависит непосредственно от входного сигнала, то он задается одной отмеченной таблицей переходов, в которой каждому ее столбцу приписан кроме состояния qm еще и выходной сигнал yg= λ(qm), соответствующий этому состоянию.
Функция заключительного состояния
в множестве
определяется также, как и для автомата
Мили.
Функция заключительного выхода
модели автомата Мура определена в
множестве
следующим образом:
;

Очевидно, что в модели автомата Мура
функция
представляет собой выходной сигнал,
который отмечает заключительное
состояние.
Функция
– реакция автомата в состоянии
на входное слово
– не определена, если
не определена.
Если
определена, то:
![]()
где
![]()
-
Теория булевых функций.
-
Связь булевых функций и схем из функциональных элементов и контактных схем. Определение.
Под функциональным элементом понимается некоторое устройство, внутренняя структура которого нас не интересует и которое обладает следующими свойствами:
1) оно имеет n ≥ 1 упорядоченных отростков сверху – входы и один отросток снизу – выход (см. рис. 5.1);

Рис. 5.1. Функциональный элемент.
2) на входы этого устройства могут подаваться сигналы, принимающие два значения, которые условно обозначают через 0 и 1;
3) при каждом наборе сигналов на входах устройство на выходе в тот же момент, в который поступили сигналы на входы, выдает один из сигналов 0 или 1;
4) набор сигналов на входах однозначно определяет сигнал на выходе, то есть если в различные моменты времени на входы поступили равные наборы сигналов, то в эти моменты на выходе будет один и тот же сигнал.
Заметим, что с каждым функциональным
элементом с n выходами сопоставима
булева функция от n переменных f
(x1, x2,…, xn),
определяемая следующим образом: входу
с номером
ставится в соответствие переменная xi
и с каждым набором (а1, а2,…,
аn) значений этих переменных
сопоставляется число f (а1,
а2,…, аn), равное
0 или 1 в зависимости от того, какой сигнал
вырабатывается на выходе при подаче
этого набора сигналов на выходы данного
функционального элемента.
В этом случае о функции f (x1, x2,…, xn) будем говорить, что данный функциональный элемент ее реализует, и такой элемент будем изображать так, как показано на рис.5.2.

Рис. 5.2. Реализация функционального элемента булевой функции f (x1, x2,…, xn).
Из функциональных элементов определяется схема из функциональных элементов (точнее схема из функциональных элементов в соответствующем логическом базисе), как-то:
1) , ∧, ∨; 3) , ∨; 5) х ∣ у;
2) , ∧; 4) 1, ∧, ; 6) х ↓ у
и т.д.
