
- •Основы общей биологии Учебник для учащихся 9 класса общеобразовательных учреждений
- •Глава 1
- •§ 1 Биология — наука о живом мире
- •§2 Общие свойства живых организмов
- •§3 Многообразие форм живых организмов
- •Глава 2
- •§ 4 Цитология — наука, изучающая клетку. Многообразие клеток
- •§ 5 Химический состав клетки
- •§ 6 Белки и нуклеиновые кислоты
- •§ 7 Строение клетки
- •§ 8 Органоиды клетки и их функции
- •§ 9 Обмен веществ — основа существования клетки
- •§ 10 Биосинтез белков в живой клетке
- •§ 11 Биосинтез углеводов — фотосинтез
- •§ 12 Обеспечение клеток энергией
- •Глава 3
- •§ 13 Типы размножения
- •§ 14 Деление клетки. Митоз
- •§ 15 Образование половых клеток. Мейоз
- •§ 16 Индивидуальное развитие организмов — онтогенез
- •Глава 4
- •§ 17 Из истории развития генетики
- •§ 18 Основные понятия генетики
- •§19 Генетические опыты Менделя
- •§ 20 Дигибридное скрещивание. Третий закон Менделя
- •§ 21 Сцепленное наследование генов и кроссинговер
- •§ 22 Взаимодействие генов и их множественное действие
- •§ 23 Определение пола и наследование признаков, сцепленных с полом
- •§ 24 Наследственная изменчивость
- •§ 25 Другие типы изменчивости
- •§ 26 Наследственные болезни, сцепленные с полом
- •Глава 5
- •§ 27 Генетические основы селекции организмов
- •§ 28 Особенности селекции растений
- •§ 29 Центры многообразия и происхождения культурных растений
- •§ 30 Особенности селекции животных
- •§ 31 Основные направления селекции микроорганизмов
- •Глава 6
- •§ 32 Представления о возникновении жизни на Земле в истории естествознания
- •§ 33 Современные представления о возникновении жизни на Земле
- •§ 34 Значение фотосинтеза и биологического круговорота веществ в развитии жизни
- •§ 35 Этапы развития жизни на Земле
- •Глава 7
- •§ 36 Идея развития органического мира в биологии
- •§ 37 Основные положения теории Чарлза Дарвина об эволюции органического мира
- •§ 38 Современные представления об эволюции органического мира
- •§ 39 Вид, его критерии и структура
- •§ 40 Процессы видообразования
- •§ 41 Макроэволюция — результат микроэволюций
- •§ 42 Основные направления эволюции
- •§ 43 Основные закономерности биологической эволюции
- •Глава 8
- •§ 44 Эволюция приматов
- •§ 45 Доказательства эволюционного происхождения человека
- •§ 46 Этапы эволюции человека
- •§ 47 Первые и современные люди
- •§ 48 Человеческие расы, их родство и происхождение
- •§ 49 Человек как житель биосферы и его влияние на природу Земли
- •Глава 9
- •§ 50 Условия жизни на Земле. Среды жизни и экологические факторы
- •§ 51 Общие законы действия факторов среды на организмы
- •§ 52 Приспособленность организмов к действиям факторов среды
- •§ 53 Биотические связи в природе
- •§ 54 Популяции
- •§ 55 Функционирование популяции и динамика ее численности
- •§ 56 Сообщества
- •§ 57 Биогеоценозы, экосистемы и биосфера
- •Как соотносятся между собой понятия «биоценоз», «экосистема» и «биогеоценоз»?
- •Что является главным условием, поддерживающим существование экосистем?
- •3*. Подумайте.
- •§ 58 Развитие и смена биогеоценозов
- •§ 59 Основные законы устойчивости живой природы
- •§ 60 Рациональное использование природы и ее охрана
- •§ 1. Биология — наука о живом мире
§ 9 Обмен веществ — основа существования клетки
Для изучения клетки под микроскопом обычно ее фиксируют, окрашивают. На приготовленном микропрепарате рассматривают уже неживую клетку, поэтому создается впечатление, что все структурные части клетки неподвижны, статичны, а это не соответствует действительности. На самом деле в живой клетке все находится в движении: движется цитоплазма, увлекая за собой многие органоиды, вещества и включения; активно работают рибосомы и митохондрии, совершается множество химических превращений. Во всех этих процессах жизнедеятельности накапливается, тратится и преобразуется энергия. Из окружающей среды в клетку поступают различные вещества, а из клетки в окружающую среду удаляются ненужные продукты обмена. Так осуществляется обмен веществ, или метаболизм (греч. metabole— «превращение»).
Обмен веществ и энергии (метаболизм) — это совокупность биохимических реакций, протекающих в клетке и обеспечивающих процессы ее жизнедеятельности.
Обмен веществ складывается из двух взаимосвязанных процессов — анаболизма и катаболизма.
Анаболизм (греч. anabole— «подъем»), или ассимиляция (лат. assimilatio — «слияние», «усвоение»), — совокупность химических процессов, направленных на образование и обновление структурных частей клеток. Поэтому анаболизм еще называют пластическим обменом. В ходе анаболизма происходит биосинтез сложных молекул из простых молекул-предшественников или из молекул веществ, поступивших из внешней среды. Важнейшими процессами анаболизма являются синтез белков и нуклеиновых кислот (свойствен всем организмам) и синтез углеводов (у растений, некоторых бактерий и цианобактерий).
Пластический обмен особенно интенсивно происходит в периоды роста организмов: в молодом возрасте у животных — при формировании потомства, а у растений — в течение вегетационного периода. При этом биосинтезирующие реакции характеризуются видовой и индивидуальной специфичностью. Например, клетки растений синтезируют для клеточной стенки сложный полисахарид — целлюлозу, клетки наружных покровов членистоногих синтезируют тоже полисахарид, но другой — хитин; в клетках наружных покровов многих позвоночных животных образуется роговое вещество, основу которого составляет белок кератин.
Анаболизм является созидательным этапом обмена веществ. Он осуществляется всегда с потреблением энергии при участии ферментов.
В процессе анаболизма с образованием сложных молекул идет накопление энергии, главным образом, в виде химических связей. Поступление этой энергии в большинстве случаев обеспечивается реакциями биологического окисления веществ клетки — реакциями катаболизма.
Катаболизм (греч. katabole — «сбрасывание», «разрушение»), или диссимиляция, — совокупность реакций, в которых происходит распад органических веществ с высвобождением энергии. При разрыве химических связей молекул органических соединений энергия высвобождается и запасается, главным образом, в виде молекул аденозинтрифосфорной кислоты (АТФ), т. е. аденозинтрифосфата. Синтез АТФ у эукариот происходит в митохондриях и хлоропластах, а у прокариот — в цитоплазме, на мембранных структурах.
Катаболизм обеспечивает все биохимические процессы в клетке энергией, поэтому его еще называют энергетическим обменом.
В процессе эволюции клетки живых организмов выработали регуляторные системы, обеспечивающие упорядоченность и согласованность метаболических реакций. Это и позволяет им адаптироваться к изменяющимся условиям окружающей среды.
Аденозинтрифосфорная кислота, или АТФ, — это нуклеотид, содержащий аденин, рибозу и трифосфат (три остатка фосфорной кислоты) (рис. 13).
Молекула АТФ очень энергоемка. Она является универсальным переносчиком и накопителем энергии. Энергия заключена в связях между тремя остатками фосфорной кислоты.
Как
происходит выделение энергии в
клетке? Отделение от АТФ одного концевого
фосфата (Ф) сопровождается выделением
40 кДж на 1 моль, тогда как при
разрыве химических связей других
соединений выделяется 12 кДж. Образовавшаяся
при
этом молекула
аденозиндифосфата
(АДФ) с двумя фосфатными остатками может
быстро восстановиться до АТФ или, при
необходимости отдав еще один концевой
фосфат, превратиться в
аденозинмонофосфат
(АМФ).
Пара
АТФ/АДФ служит основным механизмом
выработки энергии в клетке. Присоединение
фосфорных остатков к АМФ и АДФ
сопровождается накоплением
(аккумуляцией) энергии, а их отщепление
от АТФ и АДФ приводит к выделению
энергии. Благодаря богатым энергией
химическим связям в молекулах АТФ клетка
способна накапливать много энергии и
расходовать ее по мере надобности на
все жизненные процессы клетки и организма
в целом.
-
Поясните, в каком виде накапливается энергия в клетках.
-
Что произойдет с клеткой, если при метаболизме будет превалировать анаболизм или катаболизм?
3*. Клетка — это биосистема. Охарактеризуйте процессы, которые обеспечивают ее целостность.