Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А.Ф.Черняев. РУССКАЯ МЕХАНИКА.doc
Скачиваний:
102
Добавлен:
02.11.2018
Размер:
3.97 Mб
Скачать

1.7. Плотностная мерность пространства

Вероятно, первым, кто связал мерность пространства с взаимодействием, был один из величайших немецких философов Эммануил Кант. В своей студенческой рабо­те с длинным названием «Мысли об истинной оценке живых сил и разбор доказательств, которыми пользова­лись г-н Лейбниц и другие знатоки механики в этом спорном вопросе, а также некоторые предварительные соображения, касающиеся сил вообще», он изложил свои соображения об истинной мере движения на 180 страницах, и только на трех из них касается трехмерно­го пространства [27]. Но именно на этих страницах по­является мысль, отражающая суть трехмерности про­странства: «Трехмерность происходит, по-видимому, оттого, что субстанции в существующем мире дей­ствуют друг на друга таким образом, что сила дей­ствия обратно пропорциональна квадрату расстоя­ния».

Это высказывание И. Канта пытаются, сам он об этом не упоминал, связать с представлением об относительной природе пространства (лейбницево пространство — отношение тел в отличие от концепции ньютоновского абсолютного пространства, не зависящего от тел и явле­ний), но можно понимать его и по-другому и тоже в аб­солютной форме. Пространство — вещественное абсо­лютное образование-субстанция (как абсолютны все без исключения тела), включающая другие тела-пространства (почему-то часто забывается, что каждое тело само образует свое пространство), взаимодейст­вующая с ними и передающая взаимодействие пропор­ционально квадрату расстояния между ними.

Такое понимание высказывания И. Канта придает пространству все свойства тел, делает его подобным те­лам и потому взаимодействующим с ними. В то же время оно своими размерами превосходит все включае­мые тела, создавая вместе с ними телесное вместилище, некий симбиоз, обладающий но­вым качеством — «пространство».

Следует отметить, что понятие «расстояние», которое входит основным элементом в представление о про­странстве, к которому мы буквально «прикипели», в природе как некий размер отсутствует. Рас­стояние, как определенная количественная величина длины, соизмеренная с эталонным отрезком, независи­мым от природных процессов, ощущается только на­блюдателем. Природа ими не излишествует. То, что мы измеряем метрами, в природе обусловлено движением и некоторым взаимодействием, связанным с пульсацией измеряемого тела. И эта пульсация, характер которой еще достаточно непонятен, имеет некоторый центр R, относительно которого что-то, похоже, гравитационное поле, имеет линейную скорость v и угловую частоту ω. Т.е. тело и его поле пульсирует, колеблется или вращается, но не оста­ется неподвижным. Уравнение же, связывающие эти па­раметры, в механике хорошо известно:

R = v/ω,

или с использованием периода τ:

R = vτ.

Из этих уравнений следует, что расстояние в природе, обозначаемое длиной отрезка R, не есть неподвижная элементарная длительность или дистанция, а характе­ризуется количественной величиной некоторого волно­вого движения произведением скорости на период.

Однако понимание того, что расстояние не есть отре­зок чего-то и не определяется жестким эталоном длины, а является произведение подвижных волновых парамет­ров и потому имеет, прямо или косвенно, динамический характер, еще не устоялось в науке. Следовательно, и отношение к характеристике мерности не учитывает эти особенности природы расстояний. А поскольку само­пульсация тел и пространства является определяющим фактором их самодостаточности, если всякое расстоя­ние есть следствие взаимосвязанного процесса скорости и частоты объемной пульсации тел в любой области пространства, то ответ на вопрос о том, какую мерность имеет наблюдаемое пространство, достаточно очевиден — пространство трехмерно. Оно трехмерно потому, что при количестве принятой пространственной мерности >3<, как доказано математически, волновые процессы происходить не могут, орбиты планетные и электрон­ные оказываются незамкнутыми, структура светового спектра будет отличаться от наблюдаемого.

Математически можно оперировать бесчисленным множеством пространств, если исходить из того, что расстояние есть самонеподвижная данность, получаемая посредством измерения промежутков между самоне­подвижными телами или их частями неким стандарт­ным измерительным инструментом. И, пользуясь таким инструментом и постулатом о самонеподвижности тел, можно получить множество механик с великолепным математическим аппаратом, начиная с механики И. Ньютона, способных рассчитывать множество факто­ров, и не имеющих никакого отношения к природным явлениям.

Однако для понимания структуры пространства того факта, что оно имеет три измерения, недостаточно. Трехмерность пространства подтверждает и то, что в каждой его области имеется множество выделенных пульсирующих то­чек — центров ячеек, структурирующих вещественное пространство вокруг себя, и от­гораживая его от соседнего пространства, непреодолимой для них нейтральной зо­ной. И то, что к центру каждой ячейки вещественная плотность пространства возрастает. И то обстоятельст­во, что с возрастанием этой плотности количественные величины всех параметров пространства и тел, находя­щихся в нем, изменяются. И изменяются таким образом, что мыслящие существа, например, на планетах некото­рой звездной системы считают эти параметры одинаковыми для всех планет (в частно­сти аналогичного мнения придерживаются земляне).

Следует отметить, что наличие множества точек-центров пространства и неоднородная плотность веще­ства в объеме обусловливают прохождение по нему множества различных колебаний и как следствие изме­нение по объему всех физических размеров и в том числе постоянной π. И это изменение плотности, вызывающее изменение постоянной π, можно принять за количественное отображение плотностной пространст­венной мерности. То есть принятая в физике трехмер­ность отображает не многомерность пространства n, а его равновеликую (приблизительно) мерность по координатным осям. Естественно, что изменение плот­ности пространства и тел (деформация) происходит в различных областях с неодинаковой скоростью и на различные величины. Но оно не меняет физической сущности пространства и во всех направлениях от центра имеет характер приращения ±∆. И, потому от­носительно координат становятся безразмерными ко­эффициентами различной по объему гравитационной деформации. Именно по этой причине оси трёх направ­лений пространства имеют одинаковую мерность в пространстве объема, но по направлениям каждой из осей х, у, z, начиная от нулевой точки, не на равную ве­личину. Однако это неравенство на эквипотенциальной поверхности сопровождается настолько незначитель­ным изменением мерного инструмента, что в практике нами не регистрируется, но наличествует и имеет, на­пример, существенное значение для оси z.

Другое дело в мировом космическом пространстве или пространстве микромира. Поскольку структура этих пространств одинакова и отличается только количественной величиной динамической плотности пространственных областей, и в космосе и в молекулах переход из одной плотности пространства (одной мер­ности) в другую плотность (другую мерность) должен сопровождаться качественным скачком с явной или не­явной границей, отграничивающей одно пространство от другого. Наличие такой границы фиксируется и в космосе (например, центральная прозрачная область Га­лактики, как известно, плотное вещество), и на поверх­ности Земли (переход от качественно отличающегося по плотности космического пространства к пространству глубин Земли имеет своей границей поверхность по­следней), и в микромире. Так, постоянная тонкой струк­туры α = 137, вероятно, сигнализирует о такой границе в структуре атома, так же как и величина 1836, которую мы принимаем за отношение массы протона к мас­се электрона.