Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А.Ф.Черняев. РУССКАЯ МЕХАНИКА.doc
Скачиваний:
105
Добавлен:
02.11.2018
Размер:
3.97 Mб
Скачать

3.6. Движение, ускорение, инерция

Наиболее сложными и наименее понятными пробле­мами механики Ньютона являются проблемы, связанные с движением, ускорением и инерцией. И хотя большин­ство ученых не сомневается в полной разработанности этих проблем и однозначного физического толкования их сущности (ведь существует четкий и отработанный математический механизм, описывающий количествен­но все нюансы движения тел в пространстве), эта уве­ренность — еще не основание для объяснения движения без взаимодействия, его сущности, возможности прямо­линейного движения с постоянной скоростью по инер­ции (относительное движение) и движения с ускорени­ем. Эта уверенность постулируется и может оказаться не описанием реального природного процесса, а только ос­новой для подгонки математического аппарата под оп­ределенные эмпирические данные. Гносеологические корни относительного и абсолютного движения остают­ся скрытыми и неясными для понимания, а, следователь­но, и для формализации процесса движения. Это следст­вие того, что в механике Ньютона нет онтологического ответа на вопросы: что есть движение и откуда оно бе­рется? Возможно ли существование прямолинейного движения по инерции как движения без взаимодейст­вия? Чем и как вызывается инерция? Возможно ли дви­жение тел в отсутствии гравитационного поля? Вопро­сов возникает очень много, и они требуют детального описания сущности механизма движения.

Как было показано выше, самодвижение тел — пуль­сация, является основой всех видов движения, вклю­чая перемещение относительно пространства, взаи­модействия с последним и вращение. Рассмотрим движение тела, например, стального шара радиусом – 25 см, плотностью ρ = 7,9 г/см3 по поверхно­сти без трения и с учетом его взаимодействия с вращающимся гравиполем Земли. Объем шара V = 6,54·104 см3, масса т = 5,2·102 г, а вес Р = 5,168·105 см.г.с-2. Когда шар лежит на поверхности относительно неподвиж­но (т.е. его центр масс не перемещается по поверхности, а собственные колебания симметричны, не обеспечива­ют его перемещение и не принимаются во внимание), то все его параметры сбалансированы с параметрами Зем­ли. Ее везде принимаем невращающейся сферой с ра­диусом R = 6371 км и не имеющей атмосферы.

Шар, лежащий на поверхности, сам по себе не свобо­ден от нагрузок. Его объем сжат силой F, равной силе веса Р, но никакими приборами и измерениями это дав­ление не определить, поскольку ему подвергаются все элементы измерительных приборов. Именно это давле­ние есть следствие воздействия внешнего гравиполя на тело, и точно с таким же усилием тело сопротивляется внешнему давлению. Причем сопротивление грависжатию определяется свойствами тела, его структурой и строением и проявляется в некотором подобии форме силы Гука.

Важно понимать, что для внешнего наблюдателя вес тела есть его давление на поверхность Земли, а для самого тела вес — внешняя сила, обусловливающая ве­личину его деформации. То есть изменение параметров тела под воздействием гравиполя Земли является причиной возникновения веса.

Начнем разгонять тело по поверхности с постоянным ускорением и доведем скорость v движения до орби­тальной v' = 7,91·l05 см/с. В процессе разгона вес тела Р, как это следует из классической механики, «уменьшается», а масса возрастает, что вовсе не следует из той же механики, и, при достижении первой космической скорости, становится равным 0. Естественно, что в процессе разгона меняются все свойст­ва тела, но механика Ньютона фиксирует только изме­нение силы притяжения и совершенно не объясняет физический механизм, вызывающий это изменение. Попробуем разобраться в этом вопросе.

По механике: при разгоне тела возникает ускорение а', направленное вер­тикально вверх и равное

а' = – v2/R.

Оно создает телу дополнительную подъемную силу F':

F' = – та'.

При достижении ускорением а величины ускорения свободного падения а = g подъемная сила F' становится равной весу шара Р. Происходит их взаимное погаше­ние:

PF' = 0.

И в шаре, движущемся с первой орбитальной скоро­стью, возникает кажущееся состояние невесомости. Этот сценарий как бы подтверждается каждодневно демонстрацией невесомости космонавтами на космических кораблях. И потому указанное объяснение не вызывает никакого сомнения в своей справедливости. Но что произойдет, если усомниться в этом объяснении? И что может вызывать сомнение?

Сомнение вызывает исчезновение той силы — веса, которая является атрибутом тела. Т.е. не может исчезнуть по определению. Если же она исчезла, то и тело, в структуру которого входит эта сила, тоже исчезло, и все предыдущее объяснение являются математическими манипуляциями и становится некорректными.

Как уже говорилось, вес тела обусловлен силой, с которой оно сжимается напряженностью g гравиполя Земли. Когда тело начинает двигаться, возникающее ускорение а (дополнительная напряженность, вызываемая уплотнением гравиполя Земли) не отнимается, а прибавляется к напряженности внешнего гравиполя. И сила сжатия возрастает:

F' = mа'.

И потому движущееся с ускорением тело воспри­нимает возникшую силу F' как дополнительное сжи­мающее воздействие, вызывающее пропорциональное возрастание деформации. К силе веса Р = F, действующей на него в статическом состоянии, при движении стала добавляться сила F' которая при орбитальной скоро­сти сравнивается с силой F = F' и на тело действуют две силы:

F + F' = 2F = 2Р.

Это дополнительное воздействие напряженности гравиполя на движущееся тело, обусловленное взаимодействием тела с эфирным пространством, вызывает изменение всех его свойств. Подчеркну, что собственный инвариант свойств шара для сжимающей силы F и в статическом и в динамическом состоянии не меняется. Внешняя си­ла F' изменяет количественную величину свойств, но не внутренние взаимосвязи. Используя это качество, нахо­дим по КФР для шара инвариант, связывающий радиус r с силой F в статике:

F2r5= 2,608·l018const. (3.70)

Поскольку инвариант (3.70) остается неизменным как для статики, так и для динамики, то с изменением силы F до 2F величина const не изменится, но вместе с силой изменяются количественно все свойства тела, включая его радиус r. Определим, как изменится величина радиуса r' при движении шара с орбитальной скоростью подставив в F2r5 = 2,608х1018 величину 2F = 1,0336·106, и решив относительно r' получаем:

r' = 1,895·10 см.

Таким образом, приобретение телом орбитальной скорости сопровождается деформацией его радиуса почти на четверть размера в статическом состоянии. Это важнейший результат для понимания диа­лектики движения тела во внешнем гравитационном поле. Именно им определяются все физические процес­сы, сопровождающие движение. Именно он является подтверждением качественного и количественного из­менения состояния тела при переходе от статики к динамике. И именно отсюда следует физическое пред­ставление о механизме движения с ускорением и дви­жении по инерции.

Рассмотрим, как изменяются количественно другие свойства движущегося тела, например масса т и напря­женность гравиполя g. Связь массы с радиу­сом определяется инвариантом:

т2r = 6,938·106const'. (3.71)

Подставляя в (3.71) r = 1,895·10 см, определяем массу m' тела, движущегося с орбитальной скоростью:

m' = 6,05·102 гр.

По силе и массе определяем напряженность g' грави­поля:

g' = 2F/m' = 1,708·103 см/с2. (3.72)

Результат (3.72) можно получить непосредственно из инвариантной взаимосвязи радиуса шара r и напряжен­ности внешнего гравиполя g:

r2g' = 6,131105const'. (3.73)

Подставляя в (3.73) величину радиуса этого уплотне­ния r', имеем:

g' = 1,708·103 см/с2.

Напряженность g' внешнего гравиполя в окрестностях тела изменилась и выросла в 1,71 раза. А это значит, что изменилась пульсация тела, вызывая при движении уп­лотнение своей эфирной шубы. В результате этого уп­лотнения возросла напряженность внешнего гравиполя в окрестностях шара. Именно уплотняющая шуба, кото­рая возникает при любой форме движения, за счет взаимодействия с внешней средой сохраняет изменив­шуюся пульсацию тела относительно постоянной и не позволяет телу сбросить свою деформацию.

Таким образом, расчеты подтверждают диалектиче­ский вывод о том, что движущееся тело качественно отличается от неподвижного, и ни о какой тождест­венности между ними не может быть речи. Любое пере­мещение тела в гравитационном поле есть качествен­ное изменение его состояния, сопровождаемое дефор­мацией, изменением напряженности собственного гравитационного поля и других свойств. С другой сто­роны, взаимодействуя с эфиром, движение тела вызыва­ет деформацию, возрастание и уплотнение шубы, изме­нение внешней напряженности гравитационного поля вокруг тела.

Вывод о том, что физические тела в движении с любой скоростью деформируются при взаимодействии с эфи­ром, может быть подтвержден эмпирически. В печати несколько лет назад появилась информация, что одно из государств строит электромагнитное орудие, способное сообщать снаряду на выходе из ствола скорость до 8·10 км/с при собственной массе снаряда до 100 г (или весом под 100 кг).

Это орудие может быть использовано для проведения эксперимента. Для этого надо сообщить ядру диамет­ром, например, 12-16 см скорость, близкую к орбиталь­ной, и на его пути установить световой экран с фотоэле­ментами или плотную, но проницаемую мишень. Причем мишень должна отстоять от «дула» на некото­ром расстоянии. Если ядро в полете изменяет свой ради­ус, а расчеты показывают, что ядро радиусом 16 см и массой около 80 г при скорости порядка 8 км/с умень­шится в диаметре примерно на 3 см, то экраны зафикси­руют это изменение. По-видимому, уменьшение объема ядра происходит не симметрично, а в направлении дви­жения в большей степени, а в перпендикулярном в меньшей, т.е. ядро принимает форму чечевицы. Поэтому следы в мишенях могут оказаться иными по величине, чем это следует из расчета. Величина уменьшения зави­сит также от свойств материала, из которого изготовле­но ядро.

Можно предложить другой, не менее сложный экспе­римент с использованием вращающегося на орбите кос­мического аппарата. При пролете этого аппарата над оп­ределенной зоной к его орбите запускается ракета с приборами с таким расчетом, чтобы высота подъема ра­кеты оказалась равной высоте орбиты. Сама ракета должна находиться в нескольких сотнях метров в сторо­не от орбиты и точно в тот момент, когда аппарат будет пролетать мимо нее (рис.38).

Рис. 38.

Рас­стояние от ракеты до аппарата должно быть с максимальной точ­ностью зафиксировано как прибо­рами ракеты, так и с Земли. И в самый момент пролета космиче­ского аппарата, когда ракета зави­сает напротив него и почти непод­вижна относительно пространства, ее инструменты фотографируют аппарат по определенной про­грамме. После обработки материа­лов на снимках можно убедиться, что размеры космического аппара­та почти на четверть меньше тех размеров, которые он имел на поверхности Земли (на рис. 38 обозначены штрихами).

По современным представлениям, неравномерное движение тела в пространстве может быть только уско­рением. Само ускорение понимается как скорость изме­нения скорости. Поэтому при движении тела с постоян­ной скоростью его ускорение как бы равняется 0. Однако имеются два особых случая, когда это правило нарушается и ускорение оказывается не связанным с не­равномерным движением тела.

Первый случай — свободное падение отпущенного над поверхностью Земли тела под действием силы притяже­ния. Оно происходит с постоянным ускорением, в точ­ности равным напряженности гравитационного поля Земли, и равенство это объяснения не имеет. Молчаливо допускается, что тождественность ускорения и напря­женности есть случайное совпадение.

Второй случай — появление центростремительного или нормального ускорения при движении тела по окружно­сти с постоянной по модулю скоростью. Возникающее при этом тоже постоянное ускорение а' описывается со­мнительной для думающих физиков формулой:

а' = v2/R,

где v – угловая скорость, R – радиус окружности.

Появление ускорения а' в данном случае оказывается физически непонятным и даже подозрительным, по­скольку оно не исчезает и остается неизменным, пока тело движется по окружности с постоянной скоростью. Подозрительно же оно потому, что по своей размерно­сти и поведению при вращении весьма напоминает на­пряженность гравиполя Земли, тем более что и сила, вы­зываемая ускорением а тела массой т, кажется аналогичной силе притяжения. Физическое объяснение этого явления тоже отсутствует. Подозрительное отно­шение к центростремительному ускорению привело к путанице в понимании физической сути вращения, к за­мене понимания механизма движения хорошо отлажен­ным аппаратом математического формализма.

Поскольку тело при любом движении с ускорением в гравитационном поле деформируется, то эта деформа­ция вызывает изменение количественной величины всех свойств тела, включая на­пряженность его собственного гравитационного поля. Деформация прекращается и сохраняется, когда тело переходит от ускоренного движения к равномерному. Так же сохраняется достигнутая напряженность соб­ственного гравиполя тела. Наблюдаемое нами ускорен­ное движение тела для самого тела является просто изменением величины напряженности собственного гравитаци­онного поля. Переход на движение с постоянной скоро­стью — сохранение достигнутой напряженности своего гравиполя. Замедление движения — раздеформация те­ла, уменьшение напряженности собственного гравипо­ля. Таким образом, понятие «ускорение» и «изменение напряженности гравиполя» есть одно и то же поня­тие. Оно характеризует один и тот же процесс — грави­тационную деформацию тел. Только этот процесс фиксируется внешним наблюдателем как ускорение, а для тела является изменением напряженности собственного гравиполя. Тела, на поверхности Земли, постоянно под­вержены деформации напряженностью внешнего грави­поля. Эта деформация вызывает изменение напряженно­сти гравиполя тел, которое остается в дальнейшем постоянной и обозначается нами как неизменное уско­рение свободного падения. Подъем тела над поверхно­стью Земли приводит к изменению напряженности внешнего гравиполя или, что то же самое, ускорения свободного падения, которое сопровождается строго пропорциональным изменением напряженности грави­поля поднимаемого тела.

Поскольку ускорение есть наблюдаемое извне след­ствие изменения напряженности собственного гра­виполя движущегося тела, то естественно, что при движении с постоянной скоростью, при которой на­пряженность собственного гравиполя остается неиз­менной в течение всего движения, внешний наблюда­тель фиксирует отсутствие ускорения при равно­мерном движении. И делает вывод, что скорость может существовать отдельно от ускорения.

Таким образом, изменение напряженности грави­тационного поля движущегося тела и ускорение его движения есть один и тот же процесс, имеющий два названия. Только первое характеризует статическое со­стояние напряженности тела, а второе — изменение этой напряженности при движении с ускорением. Поэтому возникновение любого ускорения в любом движении есть проявление изменения напряженности гравипо­ля движущегося тела, вызываемое внешними грави­тационными силами.

Изменение напряженности гравиполя движущегося тела связано с еще одним физическим явлением, назван­ным Ньютоном инерцией. Инерция, по его опреде­лению, «...есть способность сопротивления, по кото­рой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состоя­ние покоя или равномерного прямолинейного движения» [2]. Рассмотрим сущность инерции.

Итак, тело, движущееся в пространстве с ускорением, взаимодействует с гравитационным полем, деформирует и изменяет под его воздействием напряженность собст­венного поля и плотность своей шубы. Изменение де­формации, плотности шубы и напряженности самого те­ла не может происходить без приложения определенной силы, без затрат энергии на компенсацию этих процес­сов и, следовательно, без сопротивления силе, движу­щей тело в пространстве с ускорением. Вот это сопро­тивление тела попыткам изменения своего состояния, т.е. попыткам деформировать его, и есть то, что Ньютон называет врожденным свойством тела — инер­цией.

Повторимся. В случае, когда тело внешней силой вы­водится из состояния покоя и разгоняется, деформация тела, возрастание и уплотнение шубы, взаимодействие с эфиром тормозят его движение и фиксируются нами как стремление сохранить состояние своего покоя, т.е. тело проявляет свойство инертности. От­сюда инертность — степень деформации тела, дос­тигнутая в процессе изменения напряженности соб­ственного гравиполя под воздействием извне. Рассмотренный в данном разделе пример с переходом тела радиусом r = 25 см от неподвижного состояния на поверхности к движению по инерции с первой космической скоростью показал, что в результате перехода ра­диус деформируется до величины r' = 18,4 см. Именно деформация, обусловленная воздействием эфира, вызывает сопротивление изменению движения и становится инертностью тела. Сама же деформация, а вместе с ней и асимметрия собственной пульсации тела обеспечивает последующее движение по орбите за счет постепенной раздеформации. Можно по­казать, что аналогичный эффект вызывается опусканием тела в гравитационном поле.

Допустим, что Земля представляет собой сплошной шар и гравиполе вглубь ее изменяется по инварианту R2gconst. Предположим, вслед за Мюпертюи, Вольте­ром, Перельманом, что от полюса до полюса в ней про­рыт сквозной колодец. К одной из стенок его пристрое­на шахта лифта, на котором мы опускаемся с телом до отметки, где радиус тела будет равен r'' = 18,4 см. Если теперь тело бросить в колодец, то оно не будет падать к центру, а зависнет в невесомости в колодце на этом уровне. Если же бросить несколько различных тел, то каждое из них за­виснет на различных уровнях и между ними окажется некоторое нейтральное свободное пространство.

Если их попробовать сдвинуть вместе, они будут от­талкиваться друг от друга. Именно это свойство обу­словливает образование колец вокруг планет (например, у Сатурна).

Определим, на каком расстоянии от центра R' (на ка­кой отметке) радиус тела достигнет 18,4 см. Используя зависимость

r/R = r'/R',

находим:

R' = r'R/r = 4,834·108 см.

По инварианту Rm2 = 1,769·1014 определим, чему рав­на масса тела на отметке R':

R'm2 = 1,769·1014,

т' = 6,05·102 г.

По инварианту R2g = 3,991·1020 находим напряжен­ность гравиполя Земли g' на отметке R':

R2g' =3,99·1020,

g' = 1,708·103.

Следовательно, и напряженность внешнего гравиполя g', и масса m' на отметке R' оказываются равными по аб­солютной величине напряженности g и массе т, полу­ченным при переходе тела к движению по инерции с первой космической скоростью. Поскольку тело на от­метке находится в статическом состоянии, то можно ожидать, что вес тела будет обусловливаться силой F' в два раза большей, чем на поверхности Земли. Опреде­лим эту силу:

F' = m'g' = 1,033·106 см/с2.

Аналогичную величину F/ получаем при переходе к орбитальной скорости

F' = F + F' = 1,033·106 см/с2.

Однако сила F' не является весом в буквальном по­нимании, поскольку тело на отметке не будет давить на поверхность. Она есть та сила, которая сжимает тело и обеспечивает его невесомость в данном месте. Таким образом, деформация, вызываемая опусканием тела на глубину 1,550·108 см внутрь Земли, и деформация как результат перехода тела к движению по инерции с пер­вой космической скоростью есть следствие одного и того же явления — изменение взаимодействия с напря­женностью внешнего гравиполя. Следовательно, инер­ция и гравитация есть один и тот же физический про­цесс, проявляющийся по-разному при различных формах взаимодействия тел с внешним гравитационным полем.

И снова мы приходим к выводу, что не масса, как это следует по Ньютону, выступает мерой сопротивле­ния изменению движения и инертности тела, а со­противление тела деформации, вызываемой внешним гравитационным полем либо при переносе тела по высоте, либо при его движении в любом направлении.

Если, как полагают по механике Ньютона, с поверхно­сти Земли столкнуть в колодец какое-то тело, то оно, падая к центру с постоянным ускорением, на большой скорости минует его и устремится с замедлением к дру­гому выходу. Достигнув его и на мгновение остановив­шись, оно снова устремится к центру и будет качаться туда и обратно вечно. В покое тело может находиться только в центре Земли.

Русская механика предсказывает, что тело, падая с по­верхности в колодец, сначала движется с ускорением, которое постепенно, под действием нарастающей де­формации, замедляется. И, наконец, когда энергия внут­реннего сопротивления сжатию превзойдет силу воздей­ствия внешнего гравиполя, тело настолько затормозится, что задолго до центра, после некоторого периода коле­баний, зависнет на том уровне, на котором внутреннее сопротивление уравновешивает сжимающее напряжение внешнего гравиполя. Это явление можно назвать инер­ционным зависанием, а уровень зависания — нейтраль­ной зоной гравитационного взаимодействия поля тела и Земли.

Если тело на лифте опустить ниже нейтрального уровня и там отпустить, то оно вместо падения к центру устремится вверх от центра к своей нейтральной зоне. Именно эта картина движения предметов, вызываемая теми же причинами, наблюдается в «таинственной точ­ке» города Санта-Круст (штат Калифорния, США) [25]. Отмечу также, что именно это явление — инерционное зависание тел в гравитационном поле — обусловливает возникновение хвостов у комет при движении их из зо­ны слабой напряженности гравитационного поля в зону сильной напряженности в окрестностях Солнца. Это яв­ление — образование кометных хвостов — может оказать­ся существенным для расчета масс комет в различных областях околосолнечного пространства.

Когда движущееся равномерно тело тормозится внеш­ними силами, происходит процесс раздеформации, свя­занный с рассасыванием эфирной шубы, с выделением накопленной энергии, с изменением условий взаимодей­ствия тела с эфиром. Всякое сопротивление процессу раздеформации сопровождается ускорением раздефор­мации и усилением воздействия тела на предмет, вызы­вающий сопротивление. Если же раздеформация идет со слабым сопротивлением, например вращение ротора в подшипниках, то она может продолжаться до тех пор, пока энергия, накопленная деформированным ротором, полностью не иссякнет, ротор не возвратится к тем па­раметрам, при которых его свойства окажутся сбаланси­рованными со свойствами окружающей среды. Особен­но долог процесс раздеформации тел, запущенных в космос на высокую орбиту. Он протекает годами, деся­тилетиями и долее. Но всегда все искусственные тела обязательно пройдут процесс раздеформации и упадут на те тела, вокруг которых они вращались.

Всякая инертность проявляется деформацией в той области пространства, в которой движется тело и с которой оно взаимодействует. Представление об инер­ции как о движении без взаимодействия, происходящем относительно неподвижной системы отсчета, не со­ответствует реальным процессам природы.