Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Самодельные электронные устройства в быту (Шлен....doc
Скачиваний:
45
Добавлен:
01.11.2018
Размер:
1.26 Mб
Скачать

4.3. Генераторы оптических и

АКУСТИЧЕСКИХ СИГНАЛОВ

Акустические сигналы должны быть мелодичными, за исклю­чением электронных дверных звонков. Поэтому наиболее целесооб­разным здесь будет напряжение прямоугольной формы. Его можно получить с помощью RС-мультивибратора. Периодическая последовательность импульсов может быть использована и для подачи оптического сигнала.

4.3.1. Генераторы

с умеренным потреблением тока в состоянии покоя

Мультивибраторы, отвечающие требованиям «классической» транзисторной техники, представляют собой симметричные схемы, похожие на схему, показанную на рис. 4.10 (на рис. 4.11 дана эквивалентная ей, собранная на микросхемах).

Рис. 4.10. Пример симметричного мультивибратора на транзисторах SS216D

В мультивибраторе по схеме на рис. 4.10 можно использовать практически любые высокочастотные кремниевые транзисторы n-р-n со статическим коэффи­циентом передачи тока не менее 25, например КТ301А, КТ301Е, КТ312Б, КТ315Г, КТ359А, КТ359Б, КТ359В и др.

Рис. 4.11. Симметричный мульти­вибратор на двух микросхемах

В качестве семисегментных светоизлучающих матриц подойдут отечест­венные светодиодные матрицы, например АЛ305, АЛС312, АЛС321, АЛС324, АЛСЗЗЗ, АЛС334, АЛС335, АЛС337, АЛС338, АЛС342 и др. с различными бук­венными индексами А, Б, В и т. д.

При повторении мультивибратора по схеме на рис. 4.11 можно использо­вать интегральную микросхему К133ЛАЗ или К155ЛАЗ, подключив лишь два элемента 2И-НЕ из четырех, имеющихся в данных приборах.

Рис. 4.12. Мультивибратор с око­нечным каскадом (для получения аку­стического сигнала емкость конденса­торов С должна составлять примерно 0,47 мкФ; диод V4 устанавливается только при емкостной связи)

Так как каждый раз одно из плечей мультивибратора на­гружено коллекторным током, он может быть использован для длительной работы при батарейном питании максимум при не­симметричных плечах, что возможно только при сборке схемы на транзисторах. Вариант мультивибратора на микросхемах имеет тот недостаток, что он относительно критичен к выбору номиналов схемных элементов, из-за особенностей эмиттерного входа. По­этому симметричный мультивибратор такого типа является удовлетворительным решением проблемы только при сетевом питании. Посредством изменения емкости конденсаторов Cf, C2 можно получать акустические сигналы частотой несколько со­тен герц или последовательность импульсов для ламп, следую­щих с частотой несколько секунд.

Рис. 4.1.3. Сигнализатор на базе схемы по рис. 4.12 с клавишей «узнавания своего» (контакт S1 замы­кается при открывании двери, но сиг­нализация не срабатывает, если «свой» человек предварительно обеспечит размыкание контакта S2)

Генератор, схема которого представлена на рис. 4.12, рас­ширен с помощью простого выходного каскада, благодаря чему может управлять работой громкоговорителя или лампы (от нагрузки зависит и емкость конденсаторов). Он собран на герма­ниевых транзисторах, которые в настоящее время достаточно доступны для радиолюбителей. Ток на оконечный каскад по­дается только на время генерирования сигнала (для запуска схемы точки х и у на рис. 4.12 замыкаются через резистор сопротив­лением около 10 кОм). Вследствие этого возникает проблема рассеяния расходуемой мощности, которая может быть решена за счет повышения сопротивлений резисторов в цепях базы и коллектора транзистора V1 в равных пропорциях при одно­временном уменьшении емкости правого конденсатора. Между точками х и у параллельно с пусковым резистором теперь можно установить или контакт, при замыкании которого подается сигнал, или фоторезистор. В последнем случае сигнал генерируется при повышении освещенности, причем высота звука зависит от ее интенсивности. Распайка электролитических конденсаторов, необ­ходимых для получения мигающего оптического сигнала, должна соответствовать типу транзисторов: при n-р-n транзисторах к коллекторным цепям подключаются плюсовые выводы конден­саторов, при р-n— минусовые.

Точки Р1 и Р2 в схеме генератора по рис. 4.12 замкнуты перемычкой, но если в этом месте установить контакт (которым может быть контакт реле), то сигнал информации, о которой по­дается сообщение посредством замыкания точек х и у через ре­зистор, будет подан только при одновременном замыкании точек Р1 и Р2. Эту возможность можно использовать, например, для сигнализации об открывании двери (при котором замыкаются точки х и у), когда «свой» человек должен предварительно обеспе­чить размыкание точек Р1 и Р2 (рис. 4.13). Возможны и более сложные варианты с применением датчика времени.

В мультивибраторе по схеме на рис. 4.12 можно использовать германие­вые транзисторы низкой и высокой частоты и коэффициентом передачи тока не менее 40 ... 50, например ГТ322Б, МП21Д, ГТ109Г, ГТ109Е, ГТ308Б, ГТ309Г, ГТ309Е (VI и V2), а также МП21Д, МП25Б, МП26Б, МП41, МП42Б (V3).

Рис. 4.14. Экономичный генератор на двух ТТЛ-микросхемах

Рис. 4.15. Генератор на трех ТТЛ-микросхемах (частоту можно из­менять сопротивлением резистора R и емкостью конденсатора С)

Рис. 4.16. Модифицированный ва­риант схемы по рис. 4.15 (резистор Rnep позволяет варьировать частоту в пределах двух октав)

На рис. 4.14 представлена схема генератора, собранного на ТТЛ-микросхемах и равноценного описанному выше как в отно­шении схемных элементов, так и по качеству колебаний. Правда, в этом случае возможно варьирование только емкости конденсатора С, так как сопротивление резистора R жестко задано микро­схемой. Большую свободу действий допускает устройство, схема которого показана на рис. 4.15. Этот генератор — при модифи­кации его в соответствии с рис. 4.16 — позволяет изменять часто­ту в диапазоне двух октав, т. е. появляется возможность селекти­ровать информацию, если использовать несколько резисторов разного сопротивления в различных местах, где необходимо вести контроль. Возможно также получение эффекта срабатывания сирены, например, с помощью самодельного оптоэлектронного элемента связи на базе лампы накаливания и фоторезистора. Такое интересное устройство позволяет проводить эксперименты по использованию его для систем сигнализации.

В генераторах по схемам на рис. 4.14 и 4.15 можно использовать интеграль­ные микросхемы К133ЛАЗ и К155ЛАЗ, взяв соответственно две и три схемы 2И-НЕ.

Рис. 4.17. Схема по рис. 4.16, до­полненная выходным каскадом с гром­коговорителем и срабатывающая толь­ко при замыкании выходов Р (через какой-либо потенциометр) и D (через какой-либо диод) на массу

Рис. 4.18. Схема, позволяющая по­лучать сигналы трех различных то­нальностей в зависимости от сопро­тивлений потенциометров R1...R3

На рис. 4.17 представлен вариант мультивибратора, собран­ного на двух микросхемах, с громкоговорителем на выходе. В схему мультивибратора включен контур выделения сигнала на громкоговорителе (через резистор ограничения тока). К точ­ке Р подключаются контакты устройства наблюдения за контро­лируемым явлением, а также резисторы «распознавания», как это показано на рис. 4.18. К точке D подключены диоды, один из которых при срабатывании соответствующего контакта замыкает­ся на массу, запуская генератор (в ином случае мультивибратор постоянно генерировал бы соответственно низкую частоту). Диоды обеспечивают развязку резисторов друг от друга.

В устройстве по схеме на рис. 4.17 можно применить два корпуса инте­гральных микросхем К133ЛА4, в каждом из которых находятся по три элемента ЗИ-НЕ, или аналогичные по функциональным возможностям два корпуса К155ЛА4. Диод должен быть кремниевым, высокочастотным, например Д220 или КД103, КД105, КД501, КД503 с различными последующими буквенными индексами, А, Б, В и т. д.