Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы по КСЕ.doc
Скачиваний:
17
Добавлен:
29.10.2018
Размер:
496.13 Кб
Скачать

№ 15 Второе начало термодинамики.

Второе начало термодинамики, один из основных законов термодинамики, закон возрастания энтропии: в замкнутой, т. е. изолированной в тепловом и механическом отношении, системе энтропия либо остается неизменной (если в системе протекают обратимые, равновесные процессы), либо возрастает (при неравновесных процессах) и в состоянии равновесия достигает максимума. Другие эквивалентные формулировки:

1) невозможен переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус);

2) невозможно создать периодически действующую (совершающую какой-либо термодинамический цикл) машину, вся деятельность которой сводилась бы к поднятию некоторого груза (механической работе) и соответственно охлаждению теплового резервуара (У. Томсон, М. Планк);

3) невозможно построить вечный двигатель 2-го рода (В. Оствальд).

Существуют и другие эквивалентные формулировки второго начала термодинамики, принадлежащие разным ученым: невозможен переход теплоты от тела более холодного к телу, более нагретому, без каких-либо других изменений в системе или окружающей среде (Р. Клаузиус); невозможно создать периодически действующую, т.е. совершающую какой-либо термодинамический цикл, машину, вся работа которой сводилась бы к поднятию некоторого груза (механической работе) и соответствующему охлаждению теплового резервуара (В.Томсон, М.Планк); невозможно построить вечный двигатель второго рода, т.е. тепловую машину, которая в результате совершения кругового процесса (цикла) полностью преобразует теплоту, получаемую от какого-либо одного "неисчерпаемого" источника (океана, атмосферы и т.д.) в работу (В. Оствальд).

Второе начало термодинамики в виде: энтропия вселенной стремится к максимуму. (Под энтропией он понимал величину, представляющую собой сумму всех превращений, которые должны были иметь место, чтобы привести систему в ее нынешнее состояние.)

Суть в том, что в замкнутой системе энтропия может только возрастать или оставаться постоянной. Иначе говоря, во всякой изолированной системе тепловые процессы однонаправлены, что и приводит к увеличению энтропии. Стоит энтропии достигнуть максимума, как тепловые процессы в такой системе прекращаются, что означает принятие всеми телами системы одинаковой температуры и превращение всех форм энергии в тепловую. Наступление состояния термодинамического равновесия приводит к прекращению всех макропроцессов, что и означает состояние "тепловой смерти".

Таким образом, дискуссия по поводу второго начала термодинамики привела к выводу, что законы микромира ситуацию с "демоном Максвелла" делают неосуществимой, но вместе с тем она способствовала уяснению того, что второе начало термодинамики является законом статистическим.

№ 16 Энтропия.

От греческого entropia -- поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии в 1860г. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого -- либо макроскопического состояния; в теории информации -- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтропия - это функция состояния, то есть любому состоянию можно сопоставить вполне определенное (с точность до константы - эта неопределенность убирается по договоренности, что при абсолютном нуле энтропия тоже равна нулю) значение энтропии.

Для обратимых (равновесных) процессов выполняется следующее математическое равенство (следствие так называемого равенства Клаузиуса): Sa-Sb = интеграл от а до б Q/T

где Q- подведенная теплота, T- температура, A и B - состояния, Saи Sb- энтропия, соответствующая этим состояниям (здесь рассматривается процесс перехода из состояния A в состояние B).

Для необратимых процессов выполняется неравенство, вытекающее из так называемого неравенства Клаузиуса Sa-Sb = интеграл от а до б Q/T

где Q - подведенная теплота, T- температура, A,B - состояния, Saи Sb - энтропия, соответствующая этим состояниям.

Поэтому энтропия адиабатически изолированной (нет подвода или отвода тепла) системы при необратимых процессах может только возрастать.

Используя понятие энтропии Клаузиус (1876) дал наиболее общую формулировку 2-го начала термодинамики: при реальных (необратимых) адиабатических процессах энтропия возрастает, достигая максимального значения в состоянии равновесия (2-ое начало термодинамики не является абсолютным, оно нарушается при флуктуациях).

Подводим итог: что бы мы не делали - энтропия увеличивается, следовательно любыми своими действиями мы увеличиваем хаос, и, следовательно, приближаем "конец света". Вероятно, можно точно подсчитать, когда он, то есть "конец света", наступит, но я думаю, что ближайшие несколько миллиардов лет можно об этом не беспокоиться.