- •"Электротехника и электроника"
- •Раздел I. Электрические цепи с сосредоточенными параметрами
- •1. Основные понятия и законы теории цепей
- •2. Основные свойства и методы расчета линейных цепей постоянного тока
- •8. Операторный метод расчета переходных процессов в линейных цепях
- •Раздел II. Нелинейные цепи
- •9. Нелинейные электрические цепи
- •10. Магнитные цепи постоянного тока
- •Введение
- •Раздел I. Электрические цепи с сосредоточенными параметрами
- •1 Основные понятия теории цепей
- •1.1 Основные величины
- •1.2 Электрическая схема и её элементы
- •Типовые элементы
- •1.3 Топологические элементы схем
- •1.4 Основные законы цепей
- •2 Основные свойства и методы расчета линейных цепей постоянного тока
- •2.1 Метод уравнений Кирхгофа
- •Примерный порядок расчета
- •Примеры составления уравнений по законам Кирхгофа.
- •2.2 Расчет режима простейших цепей (метод сворачивания или свертки)
- •2.3 Закон Ома для участка цепи, содержащего источники эдс
- •2.4 Метод узловых потенциалов
- •2.5 Метод наложения
- •Примерный порядок расчета
- •2.6 Теорема об эквивалентном генераторе
- •2.7 Метод эквивалентного генератора
- •Примерный порядок расчета
- •2.8 Передача мощности от активного двухполюсника в нагрузку
- •2.9 Эквивалентные преобразования структуры линейных цепей
- •3 Анализ и расчет линейных цепей синусоидального тока
- •3.1 Способы представления и параметры
- •3.2 Элементы r,l,c в цепи синусоидального тока
- •3.3 Алгебра комплексных чисел
- •3.4 Символический метод
- •3.5 Законы цепей в символической форме
- •3.6 Фазовые соотношения между напряжением и током на элементах r,l,c Комплексы амплитуд напряжения и тока на элементах r,l,c связаны между собой.
- •3.7 Применение символического метода
- •Примерный порядок расчета режима в цепи синусоидального тока.
- •3.8 Векторные и топографические диаграммы
- •Топографические диаграммы
- •Построения количественной топографической диаграммы
- •Построение диаграммы качественно
- •3.9 Мощности в цепях синусоидального тока
- •3.10 Передача мощности от активного двухполюсника в нагрузку в цепи синусоидального тока
- •4 Анализ и расчет цепей с индуктивной связью
- •4.1 Индуктивно связанные элементы цепи
- •4.2 Расчёт режимов цепей с индуктивными связями
- •4.3 Способы «замены» индуктивных связей
- •4.4 Трансформатор
- •5 Трехфазные цепи
- •5.1 Понятие о многофазных источниках питания и о многофазных цепях
- •Классификация многофазных цепей
- •5.2 Соединения звездой и многоугольником
- •5.3 Расчет симметричных и несимметричных режимов трехфазных цепей
- •Соединение звезда-звезда с нулевым проводом
- •6 Линейные цепи периодического несинусоидального тока
- •6.1 Способы представления и описания
- •1) Используют только среднее значение
- •2) Действующее значение
- •3) Средневыпрямлённое значение
- •6.2 Расчет режима
- •6.3 Мощности в цепи несинусоидального тока
- •7 Классический метод расчета переходных процессов в линейных цепях
- •7.1 Возникновение переходных процессов и законы коммутации
- •7.2 Способы получение характеристического уравнения
- •Способы получения характеристического уравнения
- •7.3 Особенности переходных процессов в цепях с одним реактивным элементом
- •7.4 Переходные процессы в цепях с двумя разнородными реактивными элементами
- •7.5 Временные характеристики цепей
- •Переходная характеристика
- •Импульсная характеристика
- •7.6 Особенности расчета переходных процессов в цепях с некорректными начальными условиями
- •8 Операторный метод расчета переходных процессов в линейных цепях
- •8.1 Применение преобразования Лапласа и его свойств к расчету переходных процессов
- •Предельные соотношения
- •8.2 Переход от изображения к оригиналу. Формулы разложения
- •8.3 Законы цепей в операторной форме
- •8.4 Эквивалентные операторные схемы замещения
- •Раздел II. Нелинейные цепи
- •9 Нелинейные электрические цепи
- •9.1 Классификация нелинейных элементов
- •9.2 Параметры нелинейных элементов и некоторые схемы их замещения
- •9.3 Графические методы расчета нелинейных цепей постоянного тока
- •10 Магнитные цепи постоянного тока
- •10.1 Основные величины, характеризующие магнитное поле
- •10.2 Основные законы магнитных цепей
- •10.3 Основные характеристики магнитных материалов
1) Используют только среднее значение
,
;
2) Действующее значение
;
Например:
- для сигнала рис(1):

,
- для сигнала рис(2):

Например, требуется
выяснить, как будет нагреваться
сопротивление R = 10 Ом
под действием тока i(t).
Для этого надо знать активную мощность,
выделяемую в этом сопротивлении:
.
Если известно разложение кривой в ряд
Фурье, то можно использовать более
простую формулу для расчёта действующего
значения.
,
.
Возведём ряд в квадрат и подставим в интеграл, получим слагаемые трёх типов:
1)
;
2)
;
3) произведение двух гармоник с разными номерами.
При вычислении интеграла от этих слагаемых получим:
- от первого
слагаемого
;
- от слагаемых
второго вида остается
(т.к.
);
- от слагаемых третьего вида получим ноль.
,
где
- действующее значение k
–ой гармоники.
3) Средневыпрямлённое значение
![]()
Используя указанные величины, вводят ряд коэффициентов, характеризующих форму кривой. В радиоэлектронике чаще всего используют коэффициенты гармоник
.
6.2 Расчет режима
Периодический несинусоидальный режим в линейных цепях возникает в одном из двух случаев:
1) в схеме есть источники энергии различной частоты, причём частоты кратны некоторому общему числу;
2) в цепи действуют источники энергии не синусоидальной формы, но с кратными периодами. Задачи этого типа легко сводятся к задаче первого типа, если каждый источник разложить в ряд Фурье, тогда схема замещения несинусоидального источника ЭДС:

Задача первого типа легко решается методом наложения, т.к. цепь линейная. После расчёта всех частичных режимов ответ записывают как сумму мгновенных значений каждого режима, а уже затем ищут то, что требуется.
Пример:

![]()
![]()
,
,
![]()
1)
![]()

,
,
.
2) расчет на первой гармонике
,
,
,
![]()

,
,
3)
,
![]()
Опять приходится рассчитывать сопротивление элементов, т.к. в каждом частичном режиме своя частота и получается, что сопротивление реактивных элементов зависят от номера гармоники.
![]()
,
![]()


,
,

Как видно из расчёта
при
входное сопротивление относительно
зажимов ЭДС чисто активное, т. е. на этой
гармонике наблюдается резонанс.
Вообще под резонансом в цепи с несинусоидальным режимом понимают резонанс на какой-то k-ой гармонике, т.к. в целом при несинусоидальном режиме понятие фазы неприменимо. На k-ой гармонике определение резонанса звучит как обычно. Другим важным примером из расчёта является то, что в разных участках цепи соотношение между гармониками различно, из-за того, что сопротивления реактивных элементов зависят от номера гармоники. Это широко используется для построения электрических фильтров.
6.3 Мощности в цепи несинусоидального тока
Различают:
1) мгновенная
мощность:
,
2) полная мощность:
,
3) активная мощность:
,
4) реактивная
мощность:
.
Способ расчёта потребляемой и генерируемой мощности такой же как и всегда.
Если u(t)
и i(t)
представлены в виде рядов Фурье:
,
,
то можно упростить вычисление активной
мощности.
Перемножим записанные ряды; получим три вида слагаемых:
1)
;
2)

где k одно и то же;
3) произведение гармоник с разными номерами.
При интегрировании
за период Т
– каждое слагаемое третьего типа даёт
ноль. Интеграл от слагаемого второго
типа будет давать
т.к.
интеграл от
за период равен нулю. Слагаемое первого
типа даст
.
В результате получим, что

т.е. фактически активная мощность периодического несинусоидального тока равна сумме активных мощностей всех гармоник, начиная с нулевой.
,
,
,
.
По аналогии вводится реактивная мощность, только вместо cos будет sin, и не будет учитываться нулевая гармоника:
.
