Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика (п).docx
Скачиваний:
9
Добавлен:
29.10.2018
Размер:
164.73 Кб
Скачать

18 Билет

Фотоэффе́кт — это испускание электронов вещества под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффектаколичество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-ому закону фотоэффектамаксимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффектадля каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν0, то фотоэффект уже не происходит.

Квант — неделимая порция какой-либо величины в физике. Кванты света или фотоны существуют только в движении (со скоростью света), они не имеют массы покоя как другие частицы.

При взаимодействии с веществом (излучении и поглощении) свет ведет себя как элементарная частица вещества, которая получила название — квант.

Уравнение Эйнштейна для фотоэффекта , где hν — энергия фотона, А — работа выхода электрона из металла, , кинетическая энергия электрона, вышедшего из металла.

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. С помощью фотоэлементов осуществляется воспроизведение звука, записанного на кинопленке, а также передача движущихся изображений (телевидение). В аэронавигации, в военном деле широкое применение нашли фотоэлементы, чувствительные к инфракрасным лучам. На явлении внутреннего фотоэффекта основана работа фото-сопротивлений. Фотосопротивления применяются для сортировки массовых изделий по их размерам и окраске.

Спектр излучения (или поглощения) — это набор волн определенных частот, которые излучает (или поглощает) атом данного вещества. Спектры бывают сплошные, линейчатые и полосатые. Сплошные спектры излучают все вещества, находящиеся в твердом или жидком состоянии. Линейчатые спектры излучают все вещества в атомарном состоянии. Полосатые спектры излучаются молекулами. 

Лазер - квантовый генератор, источник мощного оптического излучения - усиление света вынужденным излучением). В этом устройстве излучение избыточной энергии возбужденных атомов вынуждается внешним воздействием. Лазер отличается от обычных источников света двумя важными свойствами излучения. Во-первых, оно когерентно, т.е. пики и провалы всех его волн появляются согласованно, и эта согласованность остается неизменной в течение достаточно длительного времени. Все обычные источники света эмиттируют некогерентное излучение, в котором нет согласованности между пиками и провалами различных волн. Вторая особенность лазерного излучения - монохроматичность, т.е. одноцветность; это значит, что от конкретного лазера исходят волны одной и той же длины.

19 Билет

Альфа-частицы испускались источником, помещенным внутри свинцовой полости. Все альфа-частицы, кроме движущихся вдоль канала, поглощались свинцом. Узкий пучок альфа-частиц попадал на фольгу из золота перпендикулярно к ее поверхности; альфа-частицы, прошедшие сквозь фольгу и рассеянные ею, вызывали вспышки (сцинтилляции)на экране, покрытым веществом, способным светиться при попадании частиц. В пространстве между фольгой и экраном обеспечивается достаточный вакуум, чтобы не происходило рассеяние альфа-частиц в воздухе. Конструкция прибора позволила наблюдать альфа-частицы, рассеянные под углом до 150 градусов.

 Согласно ядерной модели почти вся масса атома сосредоточена в положительно заряженном ядре, занимающем лишь ничтожную часть объема атома. Положительное ядро окружено отрицательными электронами. Электронная оболочка занимает практически весь объем атома, но масса ее ввиду легкости электрона незначительна.

Постулаты Бора — основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

  • Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам для которых момент импульса квантуется: , где n — натуральные числа, а  — постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

  • При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии hν = En − Em, где En;Em — энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний — поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома[1].