
- •Пенроуз р. Тени разума: в поисках науки о сознании. 1994
- •Часть I. Почему для понимания разума необходима новая физика?
- •Глава 1. Сознание и вычисление 27
- •Глава 2. Гёделевское доказательство 111
- •Глава 3. О невычислимости в математическом мышлении 206
- •Часть II. Новая физика, необходимая для понимания разума в поисках невычислительной физики разума
- •Глава 4. Есть ли в классической физике место разуму? 339
- •Глава 5. Структура квантового мира 373
- •Глава 6. Квантовая теория и реальность 474
- •Глава 7. Квантовая теория и мозг 534
- •Глава 8. Возможные последствия 598
- •Часть I
- •Часть I
- •1.1. Разум и наука
- •1.2. Спасут ли роботы этот безумный мир?
- •1.2. Спасут ли роботы этот безумный мир? 31
- •1.2. Спасут ли роботы этот безумный мир? 33
- •1.3. Вычисление и сознательное мышление
- •1.3. Вычисление и сознательное мышление 35
- •1.3. Вычисление и сознательное мышление 37
- •1.3. Вычисление и сознательное мышление 39
- •1.4. Физикализм и ментализм 41
- •1.4. Физикализм и ментализм
- •1.5. Вычисление: нисходящие и восходящие процедуры
- •1.5. Вычисление: нисходящие и восходящие процедуры 43
- •1.5. Вычисление: нисходящие и восходящие процедуры 45
- •1.7. Хаос
- •1.7. Хаос 49
- •1.7. Хаос 51
- •1.8. Аналоговые вычисления
- •1.8. Аналоговые вычисления 53
- •1.8. Аналоговые вычисления 55
- •1.9. Невычислительные процессы
- •1.9. Невычислительные процессы 57
- •1.9. Невычислительные процессы 59
- •1.9. Невычислительные процессы
- •Глава I
- •1.9. Невычислительные процессы 65
- •Глава I
- •1.10. Завтрашний день
- •1.10. Завтрашний день 67
- •Глава I
- •1.11. Обладают ли компьютеры правами и несут ли ответственность?
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 71
- •1.12. "Осознание", "понимание", "сознание", "интеллект"
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 73
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 75
- •1.13. Доказательство Джона Серла 77
- •1.13. Доказательство Джона Серла
- •1.14. Некоторые проблемы вычислительной модели 79
- •1.14. Некоторые проблемы вычислительной модели 81
- •Глава I
- •1.16. Доказательство на основании теоремы Гёделя 89
- •1.17. Платонизм или мистицизм?
- •1.17. Платонизм или мистицизм? 91
- •1.18. Почему именно математическое понимание?
- •1.18. Почему именно математическое понимание? 93
- •1.19. Какое отношение имеет теорема Гёделя к "бытовым" действиям?
- •1.20. Мысленная визуализация и виртуальная реальность 101
- •1.20. Мысленная визуализация и виртуальная реальность 103
- •2.1. Теорема Гёделя и машины Тьюринга
- •2.1. Теорема Гёделя и машины Тьюринга 113
- •2.2. Вычисления
- •2.2. Вычисления 115
- •2.3. Незавершающиеся вычисления
- •Глава 2
- •2.6. Возможные формальные возражения против & 129
- •2.6. Возможные формальные возражения против
- •2.6. Возможные формальные возражения против & 133
- •2.6. Возможные формальные возражения против 135
- •2.6. Возможные формальные возражения против 137
- •2.6. Возможные формальные возражения против 139
- •2.6. Возможные формальные возражения против 141
- •2.6. Возможные формальные возражения против 143
- •2.8. Условие -непротиворечивости 151
- •2.8. Условие -непротиворечивости
- •2.8. Условие -непротиворечивости 153
- •2.9. Формальные системы и алгоритмическое доказательство
- •2.10. Возможные формальные возражения против (продолжение)
- •2.10. Возможные формальные возражения против 159
- •2.10. Возможные формальные возражения против 161
- •2.10. Возможные формальные возражения против 165
- •2.10. Возможные формальные возражения против 167
- •2.10. Возможные формальные возражения против 169
- •2.10. Возможные формальные возражения против 171
- •2.10. Возможные формальные возражения против 173
- •2.10. Возможные формальные возражения против 175
- •2.10. Возможные формальные возражения против 177
- •2.10. Возможные формальные возражения против 179
- •2.10. Возможные формальные возражения против 181
- •2.10. Возможные формальные возражения против 183
- •2.10. Возможные формальные возражения против 185
- •2.10. Возможные формальные возражения против 187
- •2.10. Возможные формальные возражения против 189
- •2.10. Возможные формальные возражения против 191
- •3.1. Гёдель и Тьюринг
- •3.1. Гёдель и Тьюринг 207
- •3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
- •3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
- •3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
- •3.5. Может ли алгоритм быть непознаваемым?
- •3.5. Может ли алгоритм быть непознаваемым? 231
- •3.5. Может ли алгоритм быть непознаваемым? 233
- •3.6. Естественный отбор или промысел Господень?
- •3.6. Естественный отбор или промысел Господень? 235
- •3.7. Алгоритм или алгоритмы?
- •3.7. Алгоритм или алгоритмы? 237
- •3.9. Алгоритмы обучения 243
- •3.9. Алгоритмы обучения
- •3.9. Алгоритмы обучения 245
- •3.11. Как обучаются роботы? 249
- •3.11. Как обучаются роботы?
- •3.11. Как обучаются роботы? 251
- •3.13. Механизмы математического поведения робота 257
- •3.13. Механизмы математического поведения робота 259
- •3.14. Фундаментальное противоречие 261
- •3.14. Фундаментальное противоречие
- •3.14. Фундаментальное противоречие 263
- •3.15. Способы устранения фундаментального противоречия
- •3.16. Необходимо ли роботу верить в механизмы м?
- •3.16. Необходимо ли роботу верить в механизмы м? 267
- •3.16. Необходимо ли роботу верить в механизмы м? 269
- •3.17. Робот ошибается и робот "имеет в виду"?
- •3.17. Робот ошибается и робот "имеет в виду"? 271
- •3.19. Исключение ошибочных -утверждений 275
- •3.19. Исключение ошибочных -утверждений
- •3.21. Окончателен ли приговор?
- •3.21. Окончателен ли приговор? 285
- •3.22. Спасет ли вычислительную модель разума хаос? 287
- •3.23. Reductio ad absurdum - воображаемый диалог 291
- •3.23. Reductio ad absurdum - воображаемый диалог 293
- •3.23. Reductio ad absurdum - воображаемый диалог 295
- •3.23. Reductio ad absurdum - воображаемый диалог 297
- •3.23. Reductio ad absurdum - воображаемый диалог 301
- •3.24. Не парадоксальны ли наши рассуждения?
- •3.24. Не парадоксальны ли наши рассуждения? 305
- •3.24. Не парадоксальны ли наши рассуждения? 307
- •3.25. Сложность в математических доказательствах 309
- •3.25. Сложность в математических доказательствах
- •3.25. Сложность в математических доказательствах 311
- •3.26. Разрыв вычислительных петель 313
- •3.26. Разрыв вычислительных петель
- •3.26. Разрыв вычислительных петель 315
- •3.26. Разрыв вычислительных петель 317
- •3.27. Вычислительная математика: процедуры нисходящие или восходящие?
- •3.28. Заключение
- •3.28. Заключение 323
- •3.28. Заключение 325
- •3.28. Заключение 327
- •3.28. Заключение 329
- •3.28. Заключение 331
- •3.28. Заключение 333
- •3.28. Заключение 335
- •Часть II
- •4.1. Разум и физические законы
- •4.1. Разум и физические законы 341
- •4.2. Вычислимость и хаос в современной физике
- •4.2. Вычислимость и хаос в современной физике 343
- •4.4. Эйнштейнов наклон 345
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 347
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 355
- •Глава 4
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 359
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 361
- •4.5. Вычисления и физика 363
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 367
- •4.5. Вычисления и физика 369
- •4.5. Вычисления и физика 371
- •5.1. Квантовая теория: головоломки и парадоксы
- •5.1. Квантовая теория: головоломки и парадоксы 375
- •5.2. Задача Элитцура - Вайдмана об испытании бомб 377
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры 383
- •5.3. Магические додекаэдры 385
- •Глава 5
- •Глава 5
- •Глава 5
- •5.6. Основные правила квантовой теории
- •5.6. Основные правила квантовой теории 403
- •5.7. Унитарная эволюция u 405
- •5.7. Унитарная эволюция u
- •5.7. Унитарная эволюция u 407
- •5.7. Унитарная эволюция u 409
- •Глава 5
- •5.8. Редукция r вектора состояния
- •5.8. Редукция r вектора состояния 411
- •5.8. Редукция r вектора состояния 413
- •Глава 5
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 421
- •5.10. Квантовая теория спина. Сфера Римана
- •5. . Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана 427
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 429
- •5.12. Гильбертово пространство 433
- •5.12. Гильбертово пространство
- •5. / 2. Гильбертово пространство
- •Глава 5
- •5.12. Гильбертово пространство 437
- •5.13. Описание редукции r в терминах гильбертова пространства
- •5.14. Коммутирующие измерения
- •5.15. Квантовомеханическое "и"
- •5.16. Ортогональность произведений состояний
- •5.17. Квантовая сцепленность
- •5.17. Квантовая сцепленность 451
- •5.17. Квантовая сцепленность 453
- •5.17. Квантовая сцепленность 455
- •5.17. Квантовая сцепленность 457
- •Глава 5
- •5.18. Объяснение загадки магических додекаэдров
- •5.18. Объяснение загадки магических додекаэдров 459
- •5.18. Объяснение загадки магических додекаэдров 463
- •5.18. Объяснение загадки магических додекаэдров 465
- •6.1. Является ли r реальным процессом?
- •6.1. Является ли r реальным процессом? 475
- •6.1. Является ли r реальным процессом? 477
- •6.2. О множественности миров 479
- •6.2. О множественности миров
- •6.2. О множественности миров 481
- •6.3. Не принимая вектор всерьез
- •6.3. Не принимая вектор всерьез 483
- •6.3. Не принимая вектор всерьез 485
- •6.4. Матрица плотности
- •6.4. Матрица плотности 489
- •6.4. Матрица плотности 491
- •6.4. Матрица плотности 493
- •6.4. Матрица плотности 495
- •6.5. Матрицы плотности для эпр-пар
- •6.5. Матрицы плотности для эпр-пар 497
- •6.6. Fapp-объяснение процедуры r 499
- •6.6. Fapp-объяснение процедуры r
- •6.6. Fapp-объяснение процедуры r 503
- •6.6. Fapp-объяснение процедуры r 505
- •6.7. Fapp-объяснение правила квадратов модулей
- •6.7. Fapp-объяснение правила квадратов модулей 507
- •6.9. А теперь попробуем принять действительно всерьез
- •Глава 6
- •6.10. Гравитационная редукция вектора состояния 515
- •6.10. Гравитационная редукция вектора состояния
- •6. 10. Гравитационная редукция вектора состояния 517
- •6.11. Абсолютные единицы 519
- •6.11. Абсолютные единицы
- •6.12. Новый критерий 521
- •6.12, Новый критерий
- •6.12. Новый критерий 523
- •6.12. Новый критерий 525
- •6.12. Новый критерий 527
- •6.12. Новый критерий 529
- •6.12. Новый критерий 531
- •7.2. Нейроны, синапсы и компьютеры
- •7.2. Нейроны, синапсы и компьютеры 541
- •7.2. Нейроны, синапсы и компьютеры 543
- •7.3. Квантовые вычисления
- •7.3. Квантовые вычисления 545
- •7.4. Цитоскелет и микротрубочки 547
- •7.4. Цитоскелет и микротрубочки
- •7.4. Цитоскелет и микротрубочки 549
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 553
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 557
- •7.4. Цитоскелет и микротрубочки
- •7.5. Квантовая когерентность внутри микротрубочек 561
- •7.5. Квантовая когерентность внутри микротрубочек
- •7.5. Квантовая когерентность внутри микротрубочек 563
- •7.6. Микротрубочки и сознание
- •7.6. Микротрубочки и сознание 565
- •7.7. Модель разума
- •7.7. Модель разума 569
- •7.7. Модель разума 571
- •7.7. Модель разума 573
- •7.8. Невычислимость в квантовой гравитации (1)
- •7.8. Невычислимость в квантовой гравитации (1) 577
- •7.9. Машины с оракулом и физические законы
- •7.9. Машины с оракулом и физические законы 579
- •7.10. Невычислимость в квантовой гравитации (2) 581
- •7.10. Невычислимость в квантовой гравитации (2)
- •7.10. Невычислимость в квантовой гравитации (2) 583
- •7.11. Время и сознательное восприятие
- •7.11. Время и сознательное восприятие 585
- •Глава 7
- •7.11. Время и сознательное восприятие 587
- •7.11. Время и сознательное восприятие 589
- •8.1. Искусственные разумные "устройства"
- •8.1. Искусственные разумные "устройства" 599
- •8.1. Искусственные разумные "устройства" 601
- •8.2. Что компьютеры умеют делать хорошо... И что не очень
- •8.3. Эстетика и т. Д.
- •8.4. Опасности компьютерных технологий
- •8.4. Опасности компьютерных технологий 611
- •8.5. Неправильные выборы 613
- •8.5. Неправильные выборы
- •8.5. Неправильные выборы 615
- •8.6. Физический феномен сознания 617
- •8.6. Физический феномен сознания
- •8.6. Физический феномен сознания 619
- •8.6. Физический феномен сознания 621
- •8.6. Физический феномен сознания 623
- •8.7. Три мира и три загадки 625
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 627
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 631
- •8.7. Три мира и три загадки 633
- •8.7. Три мира и три загадки 635
- •8.7. Три мира и три загадки 637
- •8.7. Три мира и три загадки 639
3.11. Как обучаются роботы? 251
лее раннем этапе нашего исследования (см., в частности, §§3.2- 3.4) нас и в самом деле занимало то, чего математики могут достичь в принципе, вне зависимости от их практических возможностей. Более того, в определенных математических ситуациях проблему можно решить исключительно с помощью действительно случайных входных данных, никакие псевдослучайные заместители для этого не годятся. Подобные ситуации возникают, когда проблема подразумевает наличие некоего "состязательного" элемента, как часто бывает, например, в теории игр и криптографии. В некоторых видах "игр на двоих" оптимальная стратегия для каждого из игроков включает в себя, помимо прочего, и полностью случайную составляющую(9). Любое сколько-нибудь последовательное пренебрежение одним из игроков необходимым для построения оптимальной стратегии элементом случайности позволяет другому игроку на протяжении достаточно длинной серии игр получить преимущество - по крайней мере, в принципе. Преимущество может быть достигнуто и в том случае, если противнику каким-то образом удалось составить достаточно достоверное представление о природе псевдослучайной (или иной) стратегии, используемой первым игроком вместо требуемой случайной. Аналогичным образом дело обстоит и в криптографии, где надежность кода напрямую зависит от того, насколько случайной является применяемая последовательность цифр. Если эта последовательность генерируется не истинно случайным образом, а посредством какого-либо псевдослучайного процесса, то, как и в случае с играми, этот процесс может в точности воспроизвести кто угодно, в том числе и потенциальный взломщик.
Поскольку случайность, как выясняется, представляет собой весьма ценное качество в таких состязательных ситуациях, то, на первый взгляд, можно предположить, что и в естественном отборе она должна играть не последнюю роль. Я даже уверен, что случайность и впрямь является во многих отношениях весьма важным фактором в процессе развития живых организмов. И все же, как мы убедимся несколько позднее в этой главе, одной лишь случайности оказывается недостаточно для того, чтобы вырваться из гёделевских сетей. И самые что ни на есть подлинно случайные элементы не помогут нашему роботу избежать ограничений, присущих вычислительным системам. Более того, у псевдослучайных процессов в этом смысле даже больше шансов, нежели у процессов чисто случайных (см. § 3.22).
252 Глава 3
Допустим на некоторое время, что наш робот и в самом деле является, по существу, машиной Тьюринга (хотя и с конечной емкостью запоминающего устройства). Строго говоря, учитывая, что робот непрерывно взаимодействует со своим окружением, а это окружение, как мы предполагаем, также допускает численное моделирование, было бы правильнее принять за единую машину Тьюринга робота вместе с окружением. Однако в целях удобства изложения я все же предлагаю рассматривать отдельно робота, как собственно машину Тьюринга, и отдельно окружение, как источник информации, поступающей на входную часть ленты машины. Вообще-то такую аналогию нельзя считать вполне приемлемой по одной формальной причине - машина Тьюринга есть устройство фиксированное и по определению неспособное изменять свою структуру "по мере накопления опыта". Можно, конечно, попытаться изобрести способ, посредством которого машина Тьюринга сможет-таки изменить свою структуру, - например, заставить машину работать безостановочно, модифицируя структуру в процессе работы, для чего непрерывно подавать на ее вход информацию от окружения. К нашему разочарованию, этот способ не сработает, поскольку результат работы машины Тьюринга можно узнать только после того, как машина достигнет внутренней команды STOP (см. §2.1 и Приложение А, а также НРК, глава 2), после чего она не будет ничего считывать с входной части своей ленты до тех пор, пока мы не запустим ее снова. Когда же мы ее запустим, для продолжения работы ей придется возвратиться в исходное состояние, т. е. "обучиться" таким способом она ничему не сможет.
Впрочем, эту трудность можно обойти при помощи сложной технической модификации. Наша машина Тьюринга так и остается фиксированной, однако после каждого рабочего цикла, т. е. после достижения команды STOP, она дает на выходе два результата (формально кодируемые в виде одного-единственного числа). Первый результат определяет, каким в действительности будет ее последующее внешнее поведение, тогда как второй результат предназначен исключительно для внутреннего использования - в нем кодируется весь опыт, который машина получила от предыдущих контактов с окружением. В начале следующего цикла с входной части ее ленты сначала считывается "внутренняя" информация и только после нее все "внешние" данные, которыми машину снабжает окружение, включая и подробную
3.12. Робот и "твердые математические убеждения" 253
реакцию упомянутого окружения на ее предшествующее поведение. Таким образом, все результаты обучения оказываются записанными на, скажем так, внутреннем участке ленты, который машина в каждом рабочем цикле считывает заново (и который с каждым циклом становится все длиннее и длиннее).
3.12. Способен ли робот на "твердые математические убеждения"?
Воспользовавшись вышеописанным способом, мы и в самом деле можем представить себе в высшей степени обобщенного самообучающегося вычислительного "робота" в виде машины Тьюринга. Далее, предполагается, что наш робот способен судить об истинности математических утверждений, пользуясь при этом всеми способностями, потенциально присущими математикам-людям. И как же он будет это делать? Вряд ли нас обрадует необходимость кодировать каким-нибудь исключительно "нисходящим" способом все математические правила (все те, что входят в формальную систему ZF, плюс все те, что туда не входят, о чем мы говорили выше), которые понадобятся роботу для того, чтобы иметь возможность непосредственно формировать собственные суждения подобно тому, как это делают люди, исходя из известных им правил, - поскольку, как мы могли убедиться, не существует ни одного сколько-нибудь приемлемого способа (за исключением, разумеется, "божественного вмешательства" - см. §§ 3.5, 3.6), посредством которого можно было бы реализовать такой неимоверно сложный и непознаваемо эффективный нисходящий алгоритм. Следует, очевидно, допустить, что какими бы внутренними "нисходящими" элементами ни обладал наш робот, они не являются жизненно важными для решения сложных математических проблем, а представляют собой всего лишь общие правила, обеспечивающие, предположительно, почву для формирования такого свойства как "понимание".
Выше (см. §3.9) мы говорили о двух различных категориях входных данных, которые могут оказать существенное влияние на поведение нашего робота: искусственных и естественных. В качестве искусственного аспекта окружения мы рассматриваем учителя (одного или нескольких), который сообщает роботу о различных математических истинах и старается подтолкнуть его
254 Глава 3
к выработке каких-то внутренних критериев, с помощью которых робот мог бы самостоятельно отличать истинные утверждения от ложных. Учитель может информировать робота о совершенных тем ошибках или рассказывать ему о всевозможных математических понятиях и различных допустимых методах математического доказательства. Конкретные процедуры, применяемые в процессе обучения, учитель выбирает по мере необходимости из широкого диапазона возможных вариантов: "упражнение", "объяснение", "наставление" и даже, возможно, "порка". Что до естественных аспектов физического окружения, то они отвечают за "идеи", возникающие у робота в процессе наблюдения за поведением физических объектов; кроме того, окружение предоставляет роботу конкретные примеры воплощения различных математических понятий - например, понятия натуральных чисел: два апельсина, семь бананов, четыре яблока, один носок, ни одного ботинка и т. д., - а также хорошие приближения идеальных геометрических объектов (прямая, окружность) и некоторых бесконечных множеств (например, множество точек, заключенных внутри окружности).
Поскольку наш робот избежал-таки предварительного, полностью нисходящего программирования и, как мы предполагаем, формирует собственное понятие о математической истине с помощью всевозможных обучающих процедур, то нам следует позволить ему совершать в процессе обучения ошибки - с тем, чтобы он мог учиться и на своих ошибках. Первое время, по крайней мере, на эти ошибки ему будет указывать учитель. Кроме того, робот может самостоятельно обнаружить из наблюдений за окружением, что какие-то из его предыдущих, предположительно истинных математических суждений оказываются в действительности ошибочными, либо сомнительными и подлежащими повторной проверке. Возможно, он придет к такому выводу, основываясь исключительно на собственных соображениях о противоречивости этих своих суждений и т. д. Идея такова, что по мере накопления опыта робот будет делать все меньше и меньше ошибок. С течением времени учителя и физическое окружение будут становиться для робота все менее необходимыми - возможно, в конечном счете, окажутся и вовсе ненужными, - и при формировании своих математических суждений он будет все в большей степени опираться на собственную вычислительную мощь. Соответственно, можно предположить, что в дальнейшем
3.12. Робот и "твердые математические убеждения" 255
наш робот не ограничится теми математическими истинами, что он узнал от учителей или вывел из наблюдений за физическим окружением. Возможно, впоследствии он даже внесет какой-либо оригинальный вклад в математические исследования.
Для того чтобы оценить степень правдоподобия нарисованной нами картины, необходимо соотнести ее с теми вещами, что мы обсуждали ранее. Если мы хотим, чтобы наш робот и в самом деле обладал всеми способностями, пониманием и проницательностью математика-человека, ему потребуется какая-никакая концепция "неопровержимой математической истины". Его ранние попытки в формировании суждений, исправленные учителями или обесцененные наблюдением за физическим окружением, в эту категорию никоим образом не попадают. Они относятся к категории "догадок", а догадкам позволяется быть предварительными, пробными и даже ошибочными. Если предполагается, что наш робот должен вести себя как подлинный математик, то даже те ошибки, которые он будет порой совершать, должны быть исправимыми - причем, в принципе, исправимыми именно в соответствии с его собственными внутренними критериями "неопровержимой истинности".
Выше мы уже убедились, что концепцию "неопровержимой истины", которой руководствуется в своей деятельности математик-человек, нельзя сформировать посредством какого бы то ни было познаваемого (человеком) набора механических правил, в справедливости которых этот самый человек может быть целиком и полностью уверен. Если мы полагаем, что наш робот способен достичь уровня математических способностей, достижимого, в принципе, для любого человеческого существа (а то и превзойти этот уровень), то в этом случае его (робота) концепция неопровержимой математической истины также должна представлять собой нечто такое, что невозможно воспроизвести посредством набора механических правил, которые можно полагать обоснованными, - т. е. правил, которые может полагать обоснованными математик-человек или, коли уж на то пошло, математик-робот.
В связи с этими соображениями возникает один весьма важный вопрос: чьи же концепции, восприятие, неопровержимые убеждения следует считать значимыми - наши или роботов? Можно ли полагать, что робот действительно обладает убеждениями или способен что-либо осознавать? Если читатель
256 Глава 3
придерживается точки зрения её, то он, возможно, сочтет такой вопрос несколько неуместным, поскольку сами понятия "осознания" или "убеждения" относятся к описанию процесса мышления и поэтому никоим образом неприменимы к целиком компьютерному роботу. Однако в рамках настоящего рассуждения нет необходимости в том, чтобы наш гипотетический робот и в самом деле обладал какими-то подлинными ментальными качествами, коль скоро мы допускаем, что он способен внешне вести себя в точности подобно математику-человеку - в полном соответствии с самыми строгими формулировками как , так и . Нам не нужно, чтобы робот действительно понимал, осознавал или верил; достаточно того, что внешне он проявляет себя в точности так, будто он этими ментальными качествами в полной мере обладает. Подробнее об этом мы поговорим в § 3.17.
Точка зрения не отличается принципиально от в том, что касается ограничений, налагаемых на возможную манеру поведения робота, однако сторонники , скорее всего, питают несколько меньшие надежды в отношении тех высот, которых на деле может достичь робот, или вероятности создания вычислительной системы, которую можно было бы полагать способной на эффективное моделирование деятельности мозга человека, -оценивающего обоснованность того или иного математического рассуждения. Подобное человеческое восприятие предполагает все же некоторое понимание смысла затронутых математических концепций. Согласно точке зрения , во всем этом нет ничего, выходящего за рамки некоторого свойства вычисления, связанного с понятием "смысла", тогда как рассматривает смысл в качестве семантического аспекта мышления и не допускает возможности его описания в чисто вычислительных терминах. В этом мы согласны с точкой зрения и отнюдь не ожидаем от нашего робота способности действительно ощущать тонкие семантические различия. Таким образом, сторонники , возможно, менее (нежели сторонники ) склонны предполагать, что какой бы то ни было робот, сконструированный в соответствии с обсуждаемыми здесь принципами, окажется когда-либо способен на демонстрацию тех внешних проявлений человеческого понимания, какие свойственны математикам-людям. Полагаю, отсюда можно сделать вывод (не такой, собственно, и неожиданный), что сторонников будет существенно легче обратить в приверженцев , чем сторонников ; впрочем, для нашего дальнейшего