Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пенроуз Р. в тени разума.doc
Скачиваний:
26
Добавлен:
28.10.2018
Размер:
2.97 Mб
Скачать

3.11. Как обучаются роботы? 251

лее раннем этапе нашего исследования (см., в частности, §§3.2- 3.4) нас и в самом деле занимало то, чего математики могут достичь в принципе, вне зависимости от их практических возможностей. Более того, в определенных математических ситуациях проблему можно решить исключительно с помощью действительно случайных входных данных, никакие псевдослучайные заместители для этого не годятся. Подобные ситуации возникают, когда проблема подразумевает наличие некоего "состязательного" элемента, как часто бывает, например, в теории игр и криптографии. В некоторых видах "игр на двоих" оптимальная стратегия для каждого из игроков включает в себя, помимо прочего, и полностью случайную составляющую(9). Любое сколько-нибудь последовательное пренебрежение одним из игроков необходимым для построения оптимальной стратегии элементом случайности позволяет другому игроку на протяжении достаточно длинной серии игр получить преимущество - по крайней мере, в принципе. Преимущество может быть достигнуто и в том случае, если противнику каким-то образом удалось составить достаточно достоверное представление о природе псевдослучайной (или иной) стратегии, используемой первым игроком вместо требуемой случайной. Аналогичным образом дело обстоит и в криптографии, где надежность кода напрямую зависит от того, насколько случайной является применяемая последовательность цифр. Если эта последовательность генерируется не истинно случайным образом, а посредством какого-либо псевдослучайного процесса, то, как и в случае с играми, этот процесс может в точности воспроизвести кто угодно, в том числе и потенциальный взломщик.

Поскольку случайность, как выясняется, представляет собой весьма ценное качество в таких состязательных ситуациях, то, на первый взгляд, можно предположить, что и в естественном отборе она должна играть не последнюю роль. Я даже уверен, что случайность и впрямь является во многих отношениях весьма важным фактором в процессе развития живых организмов. И все же, как мы убедимся несколько позднее в этой главе, одной лишь случайности оказывается недостаточно для того, чтобы вырваться из гёделевских сетей. И самые что ни на есть подлинно случайные элементы не помогут нашему роботу избежать ограничений, присущих вычислительным системам. Более того, у псевдослучайных процессов в этом смысле даже больше шансов, нежели у процессов чисто случайных (см. § 3.22).

252 Глава 3

Допустим на некоторое время, что наш робот и в самом деле является, по существу, машиной Тьюринга (хотя и с конечной емкостью запоминающего устройства). Строго говоря, учитывая, что робот непрерывно взаимодействует со своим окружением, а это окружение, как мы предполагаем, также допускает численное моделирование, было бы правильнее принять за единую машину Тьюринга робота вместе с окружением. Однако в целях удобства изложения я все же предлагаю рассматривать отдельно робота, как собственно машину Тьюринга, и отдельно окружение, как источник информации, поступающей на входную часть ленты машины. Вообще-то такую аналогию нельзя считать вполне приемлемой по одной формальной причине - машина Тьюринга есть устройство фиксированное и по определению неспособное изменять свою структуру "по мере накопления опыта". Можно, конечно, попытаться изобрести способ, посредством которого машина Тьюринга сможет-таки изменить свою структуру, - например, заставить машину работать безостановочно, модифицируя структуру в процессе работы, для чего непрерывно подавать на ее вход информацию от окружения. К нашему разочарованию, этот способ не сработает, поскольку результат работы машины Тьюринга можно узнать только после того, как машина достигнет внутренней команды STOP (см. §2.1 и Приложение А, а также НРК, глава 2), после чего она не будет ничего считывать с входной части своей ленты до тех пор, пока мы не запустим ее снова. Когда же мы ее запустим, для продолжения работы ей придется возвратиться в исходное состояние, т. е. "обучиться" таким способом она ничему не сможет.

Впрочем, эту трудность можно обойти при помощи сложной технической модификации. Наша машина Тьюринга так и остается фиксированной, однако после каждого рабочего цикла, т. е. после достижения команды STOP, она дает на выходе два результата (формально кодируемые в виде одного-единственного числа). Первый результат определяет, каким в действительности будет ее последующее внешнее поведение, тогда как второй результат предназначен исключительно для внутреннего использования - в нем кодируется весь опыт, который машина получила от предыдущих контактов с окружением. В начале следующего цикла с входной части ее ленты сначала считывается "внутренняя" информация и только после нее все "внешние" данные, которыми машину снабжает окружение, включая и подробную

3.12. Робот и "твердые математические убеждения" 253

реакцию упомянутого окружения на ее предшествующее поведение. Таким образом, все результаты обучения оказываются записанными на, скажем так, внутреннем участке ленты, который машина в каждом рабочем цикле считывает заново (и который с каждым циклом становится все длиннее и длиннее).

3.12. Способен ли робот на "твердые математические убеждения"?

Воспользовавшись вышеописанным способом, мы и в самом деле можем представить себе в высшей степени обобщенного самообучающегося вычислительного "робота" в виде машины Тьюринга. Далее, предполагается, что наш робот способен судить об истинности математических утверждений, пользуясь при этом всеми способностями, потенциально присущими математикам-людям. И как же он будет это делать? Вряд ли нас обрадует необходимость кодировать каким-нибудь исключительно "нисходящим" способом все математические правила (все те, что входят в формальную систему ZF, плюс все те, что туда не входят, о чем мы говорили выше), которые понадобятся роботу для того, чтобы иметь возможность непосредственно формировать собственные суждения подобно тому, как это делают люди, исходя из известных им правил, - поскольку, как мы могли убедиться, не существует ни одного сколько-нибудь приемлемого способа (за исключением, разумеется, "божественного вмешательства" - см. §§ 3.5, 3.6), посредством которого можно было бы реализовать такой неимоверно сложный и непознаваемо эффективный нисходящий алгоритм. Следует, очевидно, допустить, что какими бы внутренними "нисходящими" элементами ни обладал наш робот, они не являются жизненно важными для решения сложных математических проблем, а представляют собой всего лишь общие правила, обеспечивающие, предположительно, почву для формирования такого свойства как "понимание".

Выше (см. §3.9) мы говорили о двух различных категориях входных данных, которые могут оказать существенное влияние на поведение нашего робота: искусственных и естественных. В качестве искусственного аспекта окружения мы рассматриваем учителя (одного или нескольких), который сообщает роботу о различных математических истинах и старается подтолкнуть его

254 Глава 3

к выработке каких-то внутренних критериев, с помощью которых робот мог бы самостоятельно отличать истинные утверждения от ложных. Учитель может информировать робота о совершенных тем ошибках или рассказывать ему о всевозможных математических понятиях и различных допустимых методах математического доказательства. Конкретные процедуры, применяемые в процессе обучения, учитель выбирает по мере необходимости из широкого диапазона возможных вариантов: "упражнение", "объяснение", "наставление" и даже, возможно, "порка". Что до естественных аспектов физического окружения, то они отвечают за "идеи", возникающие у робота в процессе наблюдения за поведением физических объектов; кроме того, окружение предоставляет роботу конкретные примеры воплощения различных математических понятий - например, понятия натуральных чисел: два апельсина, семь бананов, четыре яблока, один носок, ни одного ботинка и т. д., - а также хорошие приближения идеальных геометрических объектов (прямая, окружность) и некоторых бесконечных множеств (например, множество точек, заключенных внутри окружности).

Поскольку наш робот избежал-таки предварительного, полностью нисходящего программирования и, как мы предполагаем, формирует собственное понятие о математической истине с помощью всевозможных обучающих процедур, то нам следует позволить ему совершать в процессе обучения ошибки - с тем, чтобы он мог учиться и на своих ошибках. Первое время, по крайней мере, на эти ошибки ему будет указывать учитель. Кроме того, робот может самостоятельно обнаружить из наблюдений за окружением, что какие-то из его предыдущих, предположительно истинных математических суждений оказываются в действительности ошибочными, либо сомнительными и подлежащими повторной проверке. Возможно, он придет к такому выводу, основываясь исключительно на собственных соображениях о противоречивости этих своих суждений и т. д. Идея такова, что по мере накопления опыта робот будет делать все меньше и меньше ошибок. С течением времени учителя и физическое окружение будут становиться для робота все менее необходимыми - возможно, в конечном счете, окажутся и вовсе ненужными, - и при формировании своих математических суждений он будет все в большей степени опираться на собственную вычислительную мощь. Соответственно, можно предположить, что в дальнейшем

3.12. Робот и "твердые математические убеждения" 255

наш робот не ограничится теми математическими истинами, что он узнал от учителей или вывел из наблюдений за физическим окружением. Возможно, впоследствии он даже внесет какой-либо оригинальный вклад в математические исследования.

Для того чтобы оценить степень правдоподобия нарисованной нами картины, необходимо соотнести ее с теми вещами, что мы обсуждали ранее. Если мы хотим, чтобы наш робот и в самом деле обладал всеми способностями, пониманием и проницательностью математика-человека, ему потребуется какая-никакая концепция "неопровержимой математической истины". Его ранние попытки в формировании суждений, исправленные учителями или обесцененные наблюдением за физическим окружением, в эту категорию никоим образом не попадают. Они относятся к категории "догадок", а догадкам позволяется быть предварительными, пробными и даже ошибочными. Если предполагается, что наш робот должен вести себя как подлинный математик, то даже те ошибки, которые он будет порой совершать, должны быть исправимыми - причем, в принципе, исправимыми именно в соответствии с его собственными внутренними критериями "неопровержимой истинности".

Выше мы уже убедились, что концепцию "неопровержимой истины", которой руководствуется в своей деятельности математик-человек, нельзя сформировать посредством какого бы то ни было познаваемого (человеком) набора механических правил, в справедливости которых этот самый человек может быть целиком и полностью уверен. Если мы полагаем, что наш робот способен достичь уровня математических способностей, достижимого, в принципе, для любого человеческого существа (а то и превзойти этот уровень), то в этом случае его (робота) концепция неопровержимой математической истины также должна представлять собой нечто такое, что невозможно воспроизвести посредством набора механических правил, которые можно полагать обоснованными, - т. е. правил, которые может полагать обоснованными математик-человек или, коли уж на то пошло, математик-робот.

В связи с этими соображениями возникает один весьма важный вопрос: чьи же концепции, восприятие, неопровержимые убеждения следует считать значимыми - наши или роботов? Можно ли полагать, что робот действительно обладает убеждениями или способен что-либо осознавать? Если читатель

256 Глава 3

придерживается точки зрения её, то он, возможно, сочтет такой вопрос несколько неуместным, поскольку сами понятия "осознания" или "убеждения" относятся к описанию процесса мышления и поэтому никоим образом неприменимы к целиком компьютерному роботу. Однако в рамках настоящего рассуждения нет необходимости в том, чтобы наш гипотетический робот и в самом деле обладал какими-то подлинными ментальными качествами, коль скоро мы допускаем, что он способен внешне вести себя в точности подобно математику-человеку - в полном соответствии с самыми строгими формулировками как , так и . Нам не нужно, чтобы робот действительно понимал, осознавал или верил; достаточно того, что внешне он проявляет себя в точности так, будто он этими ментальными качествами в полной мере обладает. Подробнее об этом мы поговорим в § 3.17.

Точка зрения не отличается принципиально от в том, что касается ограничений, налагаемых на возможную манеру поведения робота, однако сторонники , скорее всего, питают несколько меньшие надежды в отношении тех высот, которых на деле может достичь робот, или вероятности создания вычислительной системы, которую можно было бы полагать способной на эффективное моделирование деятельности мозга человека, -оценивающего обоснованность того или иного математического рассуждения. Подобное человеческое восприятие предполагает все же некоторое понимание смысла затронутых математических концепций. Согласно точке зрения , во всем этом нет ничего, выходящего за рамки некоторого свойства вычисления, связанного с понятием "смысла", тогда как рассматривает смысл в качестве семантического аспекта мышления и не допускает возможности его описания в чисто вычислительных терминах. В этом мы согласны с точкой зрения и отнюдь не ожидаем от нашего робота способности действительно ощущать тонкие семантические различия. Таким образом, сторонники , возможно, менее (нежели сторонники ) склонны предполагать, что какой бы то ни было робот, сконструированный в соответствии с обсуждаемыми здесь принципами, окажется когда-либо способен на демонстрацию тех внешних проявлений человеческого понимания, какие свойственны математикам-людям. Полагаю, отсюда можно сделать вывод (не такой, собственно, и неожиданный), что сторонников будет существенно легче обратить в приверженцев , чем сторонников ; впрочем, для нашего дальнейшего