
- •Пенроуз р. Тени разума: в поисках науки о сознании. 1994
- •Часть I. Почему для понимания разума необходима новая физика?
- •Глава 1. Сознание и вычисление 27
- •Глава 2. Гёделевское доказательство 111
- •Глава 3. О невычислимости в математическом мышлении 206
- •Часть II. Новая физика, необходимая для понимания разума в поисках невычислительной физики разума
- •Глава 4. Есть ли в классической физике место разуму? 339
- •Глава 5. Структура квантового мира 373
- •Глава 6. Квантовая теория и реальность 474
- •Глава 7. Квантовая теория и мозг 534
- •Глава 8. Возможные последствия 598
- •Часть I
- •Часть I
- •1.1. Разум и наука
- •1.2. Спасут ли роботы этот безумный мир?
- •1.2. Спасут ли роботы этот безумный мир? 31
- •1.2. Спасут ли роботы этот безумный мир? 33
- •1.3. Вычисление и сознательное мышление
- •1.3. Вычисление и сознательное мышление 35
- •1.3. Вычисление и сознательное мышление 37
- •1.3. Вычисление и сознательное мышление 39
- •1.4. Физикализм и ментализм 41
- •1.4. Физикализм и ментализм
- •1.5. Вычисление: нисходящие и восходящие процедуры
- •1.5. Вычисление: нисходящие и восходящие процедуры 43
- •1.5. Вычисление: нисходящие и восходящие процедуры 45
- •1.7. Хаос
- •1.7. Хаос 49
- •1.7. Хаос 51
- •1.8. Аналоговые вычисления
- •1.8. Аналоговые вычисления 53
- •1.8. Аналоговые вычисления 55
- •1.9. Невычислительные процессы
- •1.9. Невычислительные процессы 57
- •1.9. Невычислительные процессы 59
- •1.9. Невычислительные процессы
- •Глава I
- •1.9. Невычислительные процессы 65
- •Глава I
- •1.10. Завтрашний день
- •1.10. Завтрашний день 67
- •Глава I
- •1.11. Обладают ли компьютеры правами и несут ли ответственность?
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 71
- •1.12. "Осознание", "понимание", "сознание", "интеллект"
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 73
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 75
- •1.13. Доказательство Джона Серла 77
- •1.13. Доказательство Джона Серла
- •1.14. Некоторые проблемы вычислительной модели 79
- •1.14. Некоторые проблемы вычислительной модели 81
- •Глава I
- •1.16. Доказательство на основании теоремы Гёделя 89
- •1.17. Платонизм или мистицизм?
- •1.17. Платонизм или мистицизм? 91
- •1.18. Почему именно математическое понимание?
- •1.18. Почему именно математическое понимание? 93
- •1.19. Какое отношение имеет теорема Гёделя к "бытовым" действиям?
- •1.20. Мысленная визуализация и виртуальная реальность 101
- •1.20. Мысленная визуализация и виртуальная реальность 103
- •2.1. Теорема Гёделя и машины Тьюринга
- •2.1. Теорема Гёделя и машины Тьюринга 113
- •2.2. Вычисления
- •2.2. Вычисления 115
- •2.3. Незавершающиеся вычисления
- •Глава 2
- •2.6. Возможные формальные возражения против & 129
- •2.6. Возможные формальные возражения против
- •2.6. Возможные формальные возражения против & 133
- •2.6. Возможные формальные возражения против 135
- •2.6. Возможные формальные возражения против 137
- •2.6. Возможные формальные возражения против 139
- •2.6. Возможные формальные возражения против 141
- •2.6. Возможные формальные возражения против 143
- •2.8. Условие -непротиворечивости 151
- •2.8. Условие -непротиворечивости
- •2.8. Условие -непротиворечивости 153
- •2.9. Формальные системы и алгоритмическое доказательство
- •2.10. Возможные формальные возражения против (продолжение)
- •2.10. Возможные формальные возражения против 159
- •2.10. Возможные формальные возражения против 161
- •2.10. Возможные формальные возражения против 165
- •2.10. Возможные формальные возражения против 167
- •2.10. Возможные формальные возражения против 169
- •2.10. Возможные формальные возражения против 171
- •2.10. Возможные формальные возражения против 173
- •2.10. Возможные формальные возражения против 175
- •2.10. Возможные формальные возражения против 177
- •2.10. Возможные формальные возражения против 179
- •2.10. Возможные формальные возражения против 181
- •2.10. Возможные формальные возражения против 183
- •2.10. Возможные формальные возражения против 185
- •2.10. Возможные формальные возражения против 187
- •2.10. Возможные формальные возражения против 189
- •2.10. Возможные формальные возражения против 191
- •3.1. Гёдель и Тьюринг
- •3.1. Гёдель и Тьюринг 207
- •3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
- •3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
- •3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
- •3.5. Может ли алгоритм быть непознаваемым?
- •3.5. Может ли алгоритм быть непознаваемым? 231
- •3.5. Может ли алгоритм быть непознаваемым? 233
- •3.6. Естественный отбор или промысел Господень?
- •3.6. Естественный отбор или промысел Господень? 235
- •3.7. Алгоритм или алгоритмы?
- •3.7. Алгоритм или алгоритмы? 237
- •3.9. Алгоритмы обучения 243
- •3.9. Алгоритмы обучения
- •3.9. Алгоритмы обучения 245
- •3.11. Как обучаются роботы? 249
- •3.11. Как обучаются роботы?
- •3.11. Как обучаются роботы? 251
- •3.13. Механизмы математического поведения робота 257
- •3.13. Механизмы математического поведения робота 259
- •3.14. Фундаментальное противоречие 261
- •3.14. Фундаментальное противоречие
- •3.14. Фундаментальное противоречие 263
- •3.15. Способы устранения фундаментального противоречия
- •3.16. Необходимо ли роботу верить в механизмы м?
- •3.16. Необходимо ли роботу верить в механизмы м? 267
- •3.16. Необходимо ли роботу верить в механизмы м? 269
- •3.17. Робот ошибается и робот "имеет в виду"?
- •3.17. Робот ошибается и робот "имеет в виду"? 271
- •3.19. Исключение ошибочных -утверждений 275
- •3.19. Исключение ошибочных -утверждений
- •3.21. Окончателен ли приговор?
- •3.21. Окончателен ли приговор? 285
- •3.22. Спасет ли вычислительную модель разума хаос? 287
- •3.23. Reductio ad absurdum - воображаемый диалог 291
- •3.23. Reductio ad absurdum - воображаемый диалог 293
- •3.23. Reductio ad absurdum - воображаемый диалог 295
- •3.23. Reductio ad absurdum - воображаемый диалог 297
- •3.23. Reductio ad absurdum - воображаемый диалог 301
- •3.24. Не парадоксальны ли наши рассуждения?
- •3.24. Не парадоксальны ли наши рассуждения? 305
- •3.24. Не парадоксальны ли наши рассуждения? 307
- •3.25. Сложность в математических доказательствах 309
- •3.25. Сложность в математических доказательствах
- •3.25. Сложность в математических доказательствах 311
- •3.26. Разрыв вычислительных петель 313
- •3.26. Разрыв вычислительных петель
- •3.26. Разрыв вычислительных петель 315
- •3.26. Разрыв вычислительных петель 317
- •3.27. Вычислительная математика: процедуры нисходящие или восходящие?
- •3.28. Заключение
- •3.28. Заключение 323
- •3.28. Заключение 325
- •3.28. Заключение 327
- •3.28. Заключение 329
- •3.28. Заключение 331
- •3.28. Заключение 333
- •3.28. Заключение 335
- •Часть II
- •4.1. Разум и физические законы
- •4.1. Разум и физические законы 341
- •4.2. Вычислимость и хаос в современной физике
- •4.2. Вычислимость и хаос в современной физике 343
- •4.4. Эйнштейнов наклон 345
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 347
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 355
- •Глава 4
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 359
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 361
- •4.5. Вычисления и физика 363
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 367
- •4.5. Вычисления и физика 369
- •4.5. Вычисления и физика 371
- •5.1. Квантовая теория: головоломки и парадоксы
- •5.1. Квантовая теория: головоломки и парадоксы 375
- •5.2. Задача Элитцура - Вайдмана об испытании бомб 377
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры 383
- •5.3. Магические додекаэдры 385
- •Глава 5
- •Глава 5
- •Глава 5
- •5.6. Основные правила квантовой теории
- •5.6. Основные правила квантовой теории 403
- •5.7. Унитарная эволюция u 405
- •5.7. Унитарная эволюция u
- •5.7. Унитарная эволюция u 407
- •5.7. Унитарная эволюция u 409
- •Глава 5
- •5.8. Редукция r вектора состояния
- •5.8. Редукция r вектора состояния 411
- •5.8. Редукция r вектора состояния 413
- •Глава 5
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 421
- •5.10. Квантовая теория спина. Сфера Римана
- •5. . Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана 427
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 429
- •5.12. Гильбертово пространство 433
- •5.12. Гильбертово пространство
- •5. / 2. Гильбертово пространство
- •Глава 5
- •5.12. Гильбертово пространство 437
- •5.13. Описание редукции r в терминах гильбертова пространства
- •5.14. Коммутирующие измерения
- •5.15. Квантовомеханическое "и"
- •5.16. Ортогональность произведений состояний
- •5.17. Квантовая сцепленность
- •5.17. Квантовая сцепленность 451
- •5.17. Квантовая сцепленность 453
- •5.17. Квантовая сцепленность 455
- •5.17. Квантовая сцепленность 457
- •Глава 5
- •5.18. Объяснение загадки магических додекаэдров
- •5.18. Объяснение загадки магических додекаэдров 459
- •5.18. Объяснение загадки магических додекаэдров 463
- •5.18. Объяснение загадки магических додекаэдров 465
- •6.1. Является ли r реальным процессом?
- •6.1. Является ли r реальным процессом? 475
- •6.1. Является ли r реальным процессом? 477
- •6.2. О множественности миров 479
- •6.2. О множественности миров
- •6.2. О множественности миров 481
- •6.3. Не принимая вектор всерьез
- •6.3. Не принимая вектор всерьез 483
- •6.3. Не принимая вектор всерьез 485
- •6.4. Матрица плотности
- •6.4. Матрица плотности 489
- •6.4. Матрица плотности 491
- •6.4. Матрица плотности 493
- •6.4. Матрица плотности 495
- •6.5. Матрицы плотности для эпр-пар
- •6.5. Матрицы плотности для эпр-пар 497
- •6.6. Fapp-объяснение процедуры r 499
- •6.6. Fapp-объяснение процедуры r
- •6.6. Fapp-объяснение процедуры r 503
- •6.6. Fapp-объяснение процедуры r 505
- •6.7. Fapp-объяснение правила квадратов модулей
- •6.7. Fapp-объяснение правила квадратов модулей 507
- •6.9. А теперь попробуем принять действительно всерьез
- •Глава 6
- •6.10. Гравитационная редукция вектора состояния 515
- •6.10. Гравитационная редукция вектора состояния
- •6. 10. Гравитационная редукция вектора состояния 517
- •6.11. Абсолютные единицы 519
- •6.11. Абсолютные единицы
- •6.12. Новый критерий 521
- •6.12, Новый критерий
- •6.12. Новый критерий 523
- •6.12. Новый критерий 525
- •6.12. Новый критерий 527
- •6.12. Новый критерий 529
- •6.12. Новый критерий 531
- •7.2. Нейроны, синапсы и компьютеры
- •7.2. Нейроны, синапсы и компьютеры 541
- •7.2. Нейроны, синапсы и компьютеры 543
- •7.3. Квантовые вычисления
- •7.3. Квантовые вычисления 545
- •7.4. Цитоскелет и микротрубочки 547
- •7.4. Цитоскелет и микротрубочки
- •7.4. Цитоскелет и микротрубочки 549
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 553
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 557
- •7.4. Цитоскелет и микротрубочки
- •7.5. Квантовая когерентность внутри микротрубочек 561
- •7.5. Квантовая когерентность внутри микротрубочек
- •7.5. Квантовая когерентность внутри микротрубочек 563
- •7.6. Микротрубочки и сознание
- •7.6. Микротрубочки и сознание 565
- •7.7. Модель разума
- •7.7. Модель разума 569
- •7.7. Модель разума 571
- •7.7. Модель разума 573
- •7.8. Невычислимость в квантовой гравитации (1)
- •7.8. Невычислимость в квантовой гравитации (1) 577
- •7.9. Машины с оракулом и физические законы
- •7.9. Машины с оракулом и физические законы 579
- •7.10. Невычислимость в квантовой гравитации (2) 581
- •7.10. Невычислимость в квантовой гравитации (2)
- •7.10. Невычислимость в квантовой гравитации (2) 583
- •7.11. Время и сознательное восприятие
- •7.11. Время и сознательное восприятие 585
- •Глава 7
- •7.11. Время и сознательное восприятие 587
- •7.11. Время и сознательное восприятие 589
- •8.1. Искусственные разумные "устройства"
- •8.1. Искусственные разумные "устройства" 599
- •8.1. Искусственные разумные "устройства" 601
- •8.2. Что компьютеры умеют делать хорошо... И что не очень
- •8.3. Эстетика и т. Д.
- •8.4. Опасности компьютерных технологий
- •8.4. Опасности компьютерных технологий 611
- •8.5. Неправильные выборы 613
- •8.5. Неправильные выборы
- •8.5. Неправильные выборы 615
- •8.6. Физический феномен сознания 617
- •8.6. Физический феномен сознания
- •8.6. Физический феномен сознания 619
- •8.6. Физический феномен сознания 621
- •8.6. Физический феномен сознания 623
- •8.7. Три мира и три загадки 625
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 627
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 631
- •8.7. Три мира и три загадки 633
- •8.7. Три мира и три загадки 635
- •8.7. Три мира и три загадки 637
- •8.7. Три мира и три загадки 639
3.11. Как обучаются роботы? 249
схемы характеризуются сложным и эффективно непредсказуемым поведением. Однако математически эти системы объяснить вполне возможно; более того, их активное изучение составляет весьма существенную долю современных математических исследований .) Как уже указывалось в § 1.7, хаотические системы я также включаю в категорию "вычислительных" (или "алгоритмических"). Для наших целей важно подчеркнуть один существенный момент, касающийся хаотических систем: нет никакой необходимости в воспроизведении того или иного реального хаотического окружения, вполне достаточно воспроизвести окружение типичное. Например, когда мы хотим узнать погоду на завтра, насколько точная информация нам в действительности нужна? Не сгодится ли любое правдоподобное описание?
3.11. Как обучаются роботы?
Учитывая вышесказанное, предлагаю остановиться на том, что на самом деле нас сейчас интересуют отнюдь не проблемы численного моделирования окружения. В принципе, возможностей поработать с окружением у нас будет предостаточно - но только в том случае, если не возникнет никаких трудностей с моделированием внутренних правил самой робототехнической системы. Поэтому перейдем к вопросу о том, как мы видим себе обучение нашего робота. Какие вообще процедуры обучения доступны вычислительному роботу? Возможно, ему будут предварительно заданы некие четкие правила вычислительного характера, как это обычно делается в нынешних системах на основе искусственных нейронных сетей (см. § 1.5). Такие системы подразумевают наличие некоторого четко определенного набора вычислительных правил, в соответствии с которыми усиливаются или ослабляются связи между составляющими сеть "нейронами", посредством чего достигается улучшение качества общего функционирования системы согласно критериям (искусственным или естественным), задаваемым внешним окружением. Еще один тип систем обучения образуют так называемые "генетические алгоритмы" - нечто вроде естественного отбора (или, если хотите, "выживания наиболее приспособленных") среди различных алгоритмических процедур, выполняемых на одной вычислительной машине; посредством такого отбора выявляется наиболее эффективный в управлении системой алгоритм.
250 Глава 3
Следует пояснить, что упомянутые правила (что характерно для восходящей организации вообще) несколько отличаются от стандартных нисходящих вычислительных алгоритмов, действующих в соответствии с известными процедурами для отыскания точных решений математических проблем. Восходящие правила лишь направляют систему к некоему общему улучшению качества ее функционирования. Впрочем, это не мешает им оставаться целиком и полностью алгоритмическими - в смысле воспроизводимости на универсальном компьютере (машине Тьюринга).
В дополнение к четким правилам такого рода, в совокупность средств, с помощью которых наша робототехническая система будет модифицировать свою работу, могут быть включены и некоторые случайные элементы. Возможно, эти случайные составляющие будут вноситься посредством каких-нибудь физических процессов - например, такого квантовомеханического процесса, как распад ядер радиоактивных атомов. На практике при конструировании искусственных вычислительных устройств имеет место тенденция к введению какой-либо вычислительной процедуры, результат вычисления в которой является случайным по существу (иначе такой результат называют псевдослучайным), хотя на деле он полностью определяется детерминистским характером самого вычисления (см. § 1.9). С описанным способом тесно связан другой, суть которого заключается в точном указании момента времени, в который производится вызов "случайной" величины, и введении затем этого момента времени в сложную вычислительную процедуру, которая и сама является, по существу, хаотической системой, вследствие чего малейшие изменения во времени дают эффективно непредсказуемые различия в результатах, а сами результаты становятся эффективно случайными. Хотя, строго говоря, наличие случайных компонентов и выводит рассматриваемые процедуры за рамки определения "операции машины Тьюринга", каких-то существенных изменений это за собой не влечет. В том, что касается функционирования нашего робота, случайным входным данным на практике оказываются эквивалентны псевдослучайные, а псевдослучайные входные данные ничуть не противоречат возможностям машины Тьюринга.
"Ну и что, что на практике случайные входные данные не отличаются от псевдослучайных? - заметит дотошный читатель. - Принципиальная-то разница между ними есть". На бо-