
- •Пенроуз р. Тени разума: в поисках науки о сознании. 1994
- •Часть I. Почему для понимания разума необходима новая физика?
- •Глава 1. Сознание и вычисление 27
- •Глава 2. Гёделевское доказательство 111
- •Глава 3. О невычислимости в математическом мышлении 206
- •Часть II. Новая физика, необходимая для понимания разума в поисках невычислительной физики разума
- •Глава 4. Есть ли в классической физике место разуму? 339
- •Глава 5. Структура квантового мира 373
- •Глава 6. Квантовая теория и реальность 474
- •Глава 7. Квантовая теория и мозг 534
- •Глава 8. Возможные последствия 598
- •Часть I
- •Часть I
- •1.1. Разум и наука
- •1.2. Спасут ли роботы этот безумный мир?
- •1.2. Спасут ли роботы этот безумный мир? 31
- •1.2. Спасут ли роботы этот безумный мир? 33
- •1.3. Вычисление и сознательное мышление
- •1.3. Вычисление и сознательное мышление 35
- •1.3. Вычисление и сознательное мышление 37
- •1.3. Вычисление и сознательное мышление 39
- •1.4. Физикализм и ментализм 41
- •1.4. Физикализм и ментализм
- •1.5. Вычисление: нисходящие и восходящие процедуры
- •1.5. Вычисление: нисходящие и восходящие процедуры 43
- •1.5. Вычисление: нисходящие и восходящие процедуры 45
- •1.7. Хаос
- •1.7. Хаос 49
- •1.7. Хаос 51
- •1.8. Аналоговые вычисления
- •1.8. Аналоговые вычисления 53
- •1.8. Аналоговые вычисления 55
- •1.9. Невычислительные процессы
- •1.9. Невычислительные процессы 57
- •1.9. Невычислительные процессы 59
- •1.9. Невычислительные процессы
- •Глава I
- •1.9. Невычислительные процессы 65
- •Глава I
- •1.10. Завтрашний день
- •1.10. Завтрашний день 67
- •Глава I
- •1.11. Обладают ли компьютеры правами и несут ли ответственность?
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 71
- •1.12. "Осознание", "понимание", "сознание", "интеллект"
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 73
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 75
- •1.13. Доказательство Джона Серла 77
- •1.13. Доказательство Джона Серла
- •1.14. Некоторые проблемы вычислительной модели 79
- •1.14. Некоторые проблемы вычислительной модели 81
- •Глава I
- •1.16. Доказательство на основании теоремы Гёделя 89
- •1.17. Платонизм или мистицизм?
- •1.17. Платонизм или мистицизм? 91
- •1.18. Почему именно математическое понимание?
- •1.18. Почему именно математическое понимание? 93
- •1.19. Какое отношение имеет теорема Гёделя к "бытовым" действиям?
- •1.20. Мысленная визуализация и виртуальная реальность 101
- •1.20. Мысленная визуализация и виртуальная реальность 103
- •2.1. Теорема Гёделя и машины Тьюринга
- •2.1. Теорема Гёделя и машины Тьюринга 113
- •2.2. Вычисления
- •2.2. Вычисления 115
- •2.3. Незавершающиеся вычисления
- •Глава 2
- •2.6. Возможные формальные возражения против & 129
- •2.6. Возможные формальные возражения против
- •2.6. Возможные формальные возражения против & 133
- •2.6. Возможные формальные возражения против 135
- •2.6. Возможные формальные возражения против 137
- •2.6. Возможные формальные возражения против 139
- •2.6. Возможные формальные возражения против 141
- •2.6. Возможные формальные возражения против 143
- •2.8. Условие -непротиворечивости 151
- •2.8. Условие -непротиворечивости
- •2.8. Условие -непротиворечивости 153
- •2.9. Формальные системы и алгоритмическое доказательство
- •2.10. Возможные формальные возражения против (продолжение)
- •2.10. Возможные формальные возражения против 159
- •2.10. Возможные формальные возражения против 161
- •2.10. Возможные формальные возражения против 165
- •2.10. Возможные формальные возражения против 167
- •2.10. Возможные формальные возражения против 169
- •2.10. Возможные формальные возражения против 171
- •2.10. Возможные формальные возражения против 173
- •2.10. Возможные формальные возражения против 175
- •2.10. Возможные формальные возражения против 177
- •2.10. Возможные формальные возражения против 179
- •2.10. Возможные формальные возражения против 181
- •2.10. Возможные формальные возражения против 183
- •2.10. Возможные формальные возражения против 185
- •2.10. Возможные формальные возражения против 187
- •2.10. Возможные формальные возражения против 189
- •2.10. Возможные формальные возражения против 191
- •3.1. Гёдель и Тьюринг
- •3.1. Гёдель и Тьюринг 207
- •3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
- •3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
- •3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
- •3.5. Может ли алгоритм быть непознаваемым?
- •3.5. Может ли алгоритм быть непознаваемым? 231
- •3.5. Может ли алгоритм быть непознаваемым? 233
- •3.6. Естественный отбор или промысел Господень?
- •3.6. Естественный отбор или промысел Господень? 235
- •3.7. Алгоритм или алгоритмы?
- •3.7. Алгоритм или алгоритмы? 237
- •3.9. Алгоритмы обучения 243
- •3.9. Алгоритмы обучения
- •3.9. Алгоритмы обучения 245
- •3.11. Как обучаются роботы? 249
- •3.11. Как обучаются роботы?
- •3.11. Как обучаются роботы? 251
- •3.13. Механизмы математического поведения робота 257
- •3.13. Механизмы математического поведения робота 259
- •3.14. Фундаментальное противоречие 261
- •3.14. Фундаментальное противоречие
- •3.14. Фундаментальное противоречие 263
- •3.15. Способы устранения фундаментального противоречия
- •3.16. Необходимо ли роботу верить в механизмы м?
- •3.16. Необходимо ли роботу верить в механизмы м? 267
- •3.16. Необходимо ли роботу верить в механизмы м? 269
- •3.17. Робот ошибается и робот "имеет в виду"?
- •3.17. Робот ошибается и робот "имеет в виду"? 271
- •3.19. Исключение ошибочных -утверждений 275
- •3.19. Исключение ошибочных -утверждений
- •3.21. Окончателен ли приговор?
- •3.21. Окончателен ли приговор? 285
- •3.22. Спасет ли вычислительную модель разума хаос? 287
- •3.23. Reductio ad absurdum - воображаемый диалог 291
- •3.23. Reductio ad absurdum - воображаемый диалог 293
- •3.23. Reductio ad absurdum - воображаемый диалог 295
- •3.23. Reductio ad absurdum - воображаемый диалог 297
- •3.23. Reductio ad absurdum - воображаемый диалог 301
- •3.24. Не парадоксальны ли наши рассуждения?
- •3.24. Не парадоксальны ли наши рассуждения? 305
- •3.24. Не парадоксальны ли наши рассуждения? 307
- •3.25. Сложность в математических доказательствах 309
- •3.25. Сложность в математических доказательствах
- •3.25. Сложность в математических доказательствах 311
- •3.26. Разрыв вычислительных петель 313
- •3.26. Разрыв вычислительных петель
- •3.26. Разрыв вычислительных петель 315
- •3.26. Разрыв вычислительных петель 317
- •3.27. Вычислительная математика: процедуры нисходящие или восходящие?
- •3.28. Заключение
- •3.28. Заключение 323
- •3.28. Заключение 325
- •3.28. Заключение 327
- •3.28. Заключение 329
- •3.28. Заключение 331
- •3.28. Заключение 333
- •3.28. Заключение 335
- •Часть II
- •4.1. Разум и физические законы
- •4.1. Разум и физические законы 341
- •4.2. Вычислимость и хаос в современной физике
- •4.2. Вычислимость и хаос в современной физике 343
- •4.4. Эйнштейнов наклон 345
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 347
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 355
- •Глава 4
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 359
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 361
- •4.5. Вычисления и физика 363
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 367
- •4.5. Вычисления и физика 369
- •4.5. Вычисления и физика 371
- •5.1. Квантовая теория: головоломки и парадоксы
- •5.1. Квантовая теория: головоломки и парадоксы 375
- •5.2. Задача Элитцура - Вайдмана об испытании бомб 377
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры 383
- •5.3. Магические додекаэдры 385
- •Глава 5
- •Глава 5
- •Глава 5
- •5.6. Основные правила квантовой теории
- •5.6. Основные правила квантовой теории 403
- •5.7. Унитарная эволюция u 405
- •5.7. Унитарная эволюция u
- •5.7. Унитарная эволюция u 407
- •5.7. Унитарная эволюция u 409
- •Глава 5
- •5.8. Редукция r вектора состояния
- •5.8. Редукция r вектора состояния 411
- •5.8. Редукция r вектора состояния 413
- •Глава 5
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 421
- •5.10. Квантовая теория спина. Сфера Римана
- •5. . Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана 427
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 429
- •5.12. Гильбертово пространство 433
- •5.12. Гильбертово пространство
- •5. / 2. Гильбертово пространство
- •Глава 5
- •5.12. Гильбертово пространство 437
- •5.13. Описание редукции r в терминах гильбертова пространства
- •5.14. Коммутирующие измерения
- •5.15. Квантовомеханическое "и"
- •5.16. Ортогональность произведений состояний
- •5.17. Квантовая сцепленность
- •5.17. Квантовая сцепленность 451
- •5.17. Квантовая сцепленность 453
- •5.17. Квантовая сцепленность 455
- •5.17. Квантовая сцепленность 457
- •Глава 5
- •5.18. Объяснение загадки магических додекаэдров
- •5.18. Объяснение загадки магических додекаэдров 459
- •5.18. Объяснение загадки магических додекаэдров 463
- •5.18. Объяснение загадки магических додекаэдров 465
- •6.1. Является ли r реальным процессом?
- •6.1. Является ли r реальным процессом? 475
- •6.1. Является ли r реальным процессом? 477
- •6.2. О множественности миров 479
- •6.2. О множественности миров
- •6.2. О множественности миров 481
- •6.3. Не принимая вектор всерьез
- •6.3. Не принимая вектор всерьез 483
- •6.3. Не принимая вектор всерьез 485
- •6.4. Матрица плотности
- •6.4. Матрица плотности 489
- •6.4. Матрица плотности 491
- •6.4. Матрица плотности 493
- •6.4. Матрица плотности 495
- •6.5. Матрицы плотности для эпр-пар
- •6.5. Матрицы плотности для эпр-пар 497
- •6.6. Fapp-объяснение процедуры r 499
- •6.6. Fapp-объяснение процедуры r
- •6.6. Fapp-объяснение процедуры r 503
- •6.6. Fapp-объяснение процедуры r 505
- •6.7. Fapp-объяснение правила квадратов модулей
- •6.7. Fapp-объяснение правила квадратов модулей 507
- •6.9. А теперь попробуем принять действительно всерьез
- •Глава 6
- •6.10. Гравитационная редукция вектора состояния 515
- •6.10. Гравитационная редукция вектора состояния
- •6. 10. Гравитационная редукция вектора состояния 517
- •6.11. Абсолютные единицы 519
- •6.11. Абсолютные единицы
- •6.12. Новый критерий 521
- •6.12, Новый критерий
- •6.12. Новый критерий 523
- •6.12. Новый критерий 525
- •6.12. Новый критерий 527
- •6.12. Новый критерий 529
- •6.12. Новый критерий 531
- •7.2. Нейроны, синапсы и компьютеры
- •7.2. Нейроны, синапсы и компьютеры 541
- •7.2. Нейроны, синапсы и компьютеры 543
- •7.3. Квантовые вычисления
- •7.3. Квантовые вычисления 545
- •7.4. Цитоскелет и микротрубочки 547
- •7.4. Цитоскелет и микротрубочки
- •7.4. Цитоскелет и микротрубочки 549
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 553
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 557
- •7.4. Цитоскелет и микротрубочки
- •7.5. Квантовая когерентность внутри микротрубочек 561
- •7.5. Квантовая когерентность внутри микротрубочек
- •7.5. Квантовая когерентность внутри микротрубочек 563
- •7.6. Микротрубочки и сознание
- •7.6. Микротрубочки и сознание 565
- •7.7. Модель разума
- •7.7. Модель разума 569
- •7.7. Модель разума 571
- •7.7. Модель разума 573
- •7.8. Невычислимость в квантовой гравитации (1)
- •7.8. Невычислимость в квантовой гравитации (1) 577
- •7.9. Машины с оракулом и физические законы
- •7.9. Машины с оракулом и физические законы 579
- •7.10. Невычислимость в квантовой гравитации (2) 581
- •7.10. Невычислимость в квантовой гравитации (2)
- •7.10. Невычислимость в квантовой гравитации (2) 583
- •7.11. Время и сознательное восприятие
- •7.11. Время и сознательное восприятие 585
- •Глава 7
- •7.11. Время и сознательное восприятие 587
- •7.11. Время и сознательное восприятие 589
- •8.1. Искусственные разумные "устройства"
- •8.1. Искусственные разумные "устройства" 599
- •8.1. Искусственные разумные "устройства" 601
- •8.2. Что компьютеры умеют делать хорошо... И что не очень
- •8.3. Эстетика и т. Д.
- •8.4. Опасности компьютерных технологий
- •8.4. Опасности компьютерных технологий 611
- •8.5. Неправильные выборы 613
- •8.5. Неправильные выборы
- •8.5. Неправильные выборы 615
- •8.6. Физический феномен сознания 617
- •8.6. Физический феномен сознания
- •8.6. Физический феномен сознания 619
- •8.6. Физический феномен сознания 621
- •8.6. Физический феномен сознания 623
- •8.7. Три мира и три загадки 625
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 627
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 631
- •8.7. Три мира и три загадки 633
- •8.7. Три мира и три загадки 635
- •8.7. Три мира и три загадки 637
- •8.7. Три мира и три загадки 639
Глава 2
Рис. 2.1. Сферы, уложенные в кубический массив.
А теперь посмотрим
О
Рис. 2.2. Разберем куб на части - каждая со своей задней стенкой, боковой стенкой и потолком.
Посмотрим теперь на одну из наших трехгранных конфигураций со стороны, т. е. вдоль прямой, соединяющей начальную точку построения и точку, общую для всех трех граней. Мы уви-
2.4. Как убедиться в незавершаемости вычислений? 121
дим шестиугольник, подобный тому, что изображен на рис. 2.3. Точки, из которых складываются эти увеличивающиеся в размере шестиугольники, представляют собой, в сущности, те же точки, что образуют полный куб. То есть получается, что последовательное сложение шестиугольных чисел, начиная с единицы, всегда будет давать число кубическое. Следовательно, можно считать доказанным, что вычисление, требуемое для решения задачи (Е ), никогда не завершится.
Рис. 2.3. Каждую часть построения можно рассматривать как шестиугольник.
Кто-то, быть может, уже готов упрекнуть меня в том, что представленные выше рассуждения можно счесть в лучшем случае интуитивным умозаключением, но не формальным и строгим математическим доказательством. На самом же деле, перед вами именно доказательство, и доказательство вполне здравое, а пишу все это я отчасти и для того, чтобы показать, что осмысленность того или иного метода математического обоснования никак не связана с его "формализованностью" в соответствии с какой-либо заранее заданной и общепринятой системой правил. Напомню, кстати, о еще более элементарном примере геометрического обоснования, применяемого для получения одного общего свойства натуральных чисел, - речь идет о доказательстве истинно-
122 Глава 2
сти равенства axb = bxa, приведенном в § 1.19. Тоже вполне достойное "доказательство", хотя формальным его назвать нельзя.
Представленное выше рассуждение о суммировании последовательных шестиугольных чисел можно при желании заменить более формальным математическим доказательством. В основу такого формального доказательства можно положить принцип математической индукции, т.е. процедуру установления истинности утверждения в отношении всех натуральных чисел на основании одного-единственного вычисления. По существу, этот принцип позволяет заключить, что некое положение Р(п), зависящее от конкретного натурального числа п (например, такое: "сумма первых п шестиугольных чисел равна п3"), справедливо для всех п, если мы можем показать, во-первых, что оно справедливо для п = 0 (или, в нашем случае, для п = 1), и, во-вторых, что из истинности Р (п) следует истинность и Р (п +1). Думаю, нет необходимости описывать здесь в деталях, как можно с помощью математической индукции доказать невозможность завершить вычисление ( Е); тем же, кого данная тема заинтересовала, рекомендую попытаться в качестве упражнения выполнить такое доказательство самостоятельно.
Всегда ли для установления факта действительной незавер-шаемости вычисления достаточно применить некие четко определенные правила - такие, например, как принцип математической индукции? Как ни странно, нет. Это утверждение, как мы вскоре увидим, является одним из следствий теоремы Гёделя, и для нас крайне важно попытаться его правильно понять. Причем недостаточной оказывается не только математическая индукция. Недостаточным будет какой угодно набор правил, если под "набором правил" подразумевать некую систему формализованных процедур, в рамках которой возможно исключительно вычислительным путем проверить корректность применения этих правил в каждом конкретном случае. Такой вывод может показаться чересчур пессимистичным, ибо он, по-видимому, означает, что, несмотря на то, что вычисления, которые нельзя завершить, существуют, сам факт их незавершаемости строго математически установить невозможно. Однако смысл упомянутого следствия из теоремы Гёделя заключается вовсе не в этом. На самом деле, все не так уж и плохо: способность понимать и делать выводы, присущая математикам - как, впрочем, и всем остальным людям, наделенным логическим мышлением и воображением, - просто-
2.5. Семейства вычислений 123
напросто не поддается формализации в виде того или иного набора правил. Иногда правила могут стать частичной заменой пониманию, однако в полной мере такая замена не представляется возможной.
2.5. Семейства вычислений; следствие Гёделя -
Тьюринга
Для того, чтобы понять, каким образом из теоремы Гёделя (в моей упрощенной формулировке, навеянной отчасти идеями Тьюринга) следует все вышесказанное, нам необходимо будет сделать небольшое обобщение для типов утверждений, относящихся к рассмотренным в предыдущем разделе вычислениям. Вместо того чтобы решать проблему завершаемости для каждого отдельного вычисления ((А), (В), (С), (D) или (Е)), нам следует рассмотреть некоторое общее вычисление, которое зависит от натурального числа п (либо как-то воздействует на него). Таким образом, обозначив такое вычисление через С(п), мы можем рассматривать его как целое семейство вычислений, где для каждого натурального числа (О, 1, 2, 3, 4,...) выполняется отдельное вычисление (соответственно, С(0), С(1), С(2), С(3), С(4), ...), а сам принцип, в соответствии с которым вычисление зависит от п, является целиком и полностью вычислительным.
В терминах машин Тьюринга это всего лишь означает, что С (п) есть действие, производимое некоей машиной Тьюринга над числом п. Иными словами, число п наносится на ленту и подается на вход машины, после чего машина самостоятельно выполняет вычисления. Если вас почему-либо не устраивает концепция "машины Тьюринга", вообразите себе самый обыкновенный универсальный компьютер и считайте п "данными", необходимыми для работы какой-нибудь программы. Нас в данном случае интересует лишь одно: при любом ли значении п может завершиться работа такого компьютера.
Для того чтобы пояснить, что именно понимается под вычислением, зависящим от натурального числа п, рассмотрим два примера:
(F) найти число, не являющееся суммой квадратов п чисел,
и
(G) найти нечетное число, являющееся суммой п четных чисел.
124 Глава 2
Припомнив, о чем говорилось выше, мы без особого труда убедимся, что вычисление (F) завершается только при п = О, 1, 2 и 3 (давая в результате, соответственно, 1, 2, 3 и 7), тогда как вычисление (G) вообще не завершается ни при каком значении п. Вздумай мы действительно доказать, что вычисление (F) не завершается при п, равном или большем 4, нам понадобилась бы более или менее серьезная математическая подготовка (по крайней мере, знакомство с доказательством Лагранжа); с другой стороны, тот факт, что ни при каком п не завершается вычисление (G), вполне очевиден. Какими же процедурами располагают математики для установления незавершаемой природы таких вычислений в общем случае? Можно ли сами эти процедуры представить в вычислительной форме?
Предположим, что у нас имеется некая вычислительная процедура А, которая по завершении1 дает нам исчерпывающее доказательство того, что вычисление С (п) действительно никогда не заканчивается. Ниже мы попробуем вообразить, что А включает в себя все известные математикам процедуры, посредством которых можно убедительно доказать, что то или иное вычисление никогда не завершается. Соответственно, если в каком-то конкретном случае завершается процедура А, то мы получаем, в рамках доступного человеку знания, доказательство того, что рассматриваемое конкретное вычисление никогда не заканчивается. Большая часть последующих рассуждений не потребует участия процедуры А именно в такой роли, так как они посвящены, в основном, математическим умопостроениям. Однако для получения окончательного заключения нам придется-таки придать процедуре А соответствующий статус.
Я, разумеется, не требую, чтобы посредством процедуры А всегда можно было однозначно установить, что вычисление С (п) нельзя завершить (в случае, если это действительно так); однако я настаиваю на том, что неверных ответов А не дает, т. е. если мы с ее помощью пришли к выводу, что вычисление С (п) не завершается, значит, так оно и есть. Процедуру А, которая и в самом деле всегда дает верный ответ, мы будем называть обоснованной.
'Здесь я предполагаю, что если процедура А вообще завершается, то это свидетельствует об успешном установлении факта незавершаемости С (п). Если же А "застревает" по какой-либо иной, нежели достижение "успеха", причине, то это означает, что в данном случае процедура А корректно завершиться не может. См. далее по тексту возражения Q3 и Q4, а также Приложение А, с. 193.
2.5. Семейства вычислений 125
Следует отметить, что если процедура А оказывается в действительности необоснованной, то этот факт, в принципе, можно установить с помощью прямого вычисления - иными словами, необоснованную процедуру А можно опровергнуть вычислительными методами: если А ошибочно утверждает, что вычисление С (п) нельзя завершить, тогда как в действительности это не так, то выполнение самого вычисления С (п) в конечном счете приведет к опровержению А. (Возможность практического выполнения такого вычисления представляет собой отдельный вопрос, его мы рассмотрим в ответе на возражение Q8.)
Для того чтобы процедуру А можно было применять к вычислениям в общем случае, нам потребуется какой-нибудь способ маркировки различных вычислений С (п), допускаемый А. Все возможные вычисления С можно, вообще говоря, представить в виде простой последовательности
Со, Ci, С-2, Сз, Сз, Cs, ...,
т. е. Q-e вычисление при этом получит обозначение Сд. В случае применения такого вычисления к конкретному числу п будем записывать
С0 (n), d (п), С2 (п), С3 (п), С4 (п), С5 (п), ....
Можно представить, что эта последовательность задается, скажем, как некий пронумерованный ряд компьютерных программ. (Для большей ясности мы могли бы, при желании, рассматривать такую последовательность как ряд пронумерованных машин Тьюринга, описанных в НРК; в этом случае вычисление представляет собой процедуру, выполняемую <?-й машиной Тьюринга Tq над числом п.) Здесь важно учитывать следующий технический момент: рассматриваемая последовательность является вычислимой - иными словами, существует одно-единственное2 вычисление С,, которое, будучи выполнено над числом д, дает в результате Cq, или, если точнее, выполнение вычисления С. над парой чисел q, п (именно в таком порядке) дает в результате Сд(п).
2Собственно, точно такой же результат достигается посредством процедуры, выполняемой универсальной машиной Тьюринга над парой чисел д, п; см. Приложение А и НРК, с. 51-57.
126 Глава 2
Можно полагать, что процедура А представляет собой некое особое вычисление, выполняя которое над парой чисел q, n, можно однозначно установить, что вычисление Cq (п), в конечном итоге, никогда не завершится. Таким образом, когда завершается вычисление А, мы имеем достаточное доказательство того, что вычисление Cq (n) завершить невозможно. Хотя, как уже говорилось, мы и попытаемся вскоре представить себе такую процедуру А, которая формализует все известные современной математике процедуры, способные достоверно установить невозможность завершения вычисления, нет никакой необходимости придавать А такой смысл прямо сейчас. Пока же процедурой А мы будем называть любой обоснованный набор вычислительных правил, с помощью которого можно установить, что то или иное вычисление никогда не завершается. Поскольку выполняемое процедурой А вычисление зависит от двух чисел q и п, его можно обозначить как A (q, n) и записать следующее утверждение:
(Н) Если завершается А (д, п), то Cq (n) не завершается.
Рассмотрим частный случай утверждения (Н), положив q равным п. Такой шаг может показаться странным, однако он вполне допустим. (Он представляет собой первый этап мощного "диагонального доказательства" - процедуры, открытой в высшей степени оригинальным и влиятельным датско-русско-немецким математиком девятнадцатого века Георгом Кантором; эта процедура лежит в основе рассуждений и Гёделя, и Тьюринга.) При q, равном п, наше утверждение принимает следующий вид:
(1) Если завершается А (п, п), то Сп (п) не завершается.
Отметим, что А (п, п) зависит только от одного числа (п), а не от двух, так что данное вычисление должно принадлежать ряду Со, С\, С-2, Сз, ... (по п), поскольку предполагается, что этот ряд содержит все вычисления, которые можно выполнить над одним натуральным числом п. Обозначив это вычисление через С/с, запишем:
(J) A(n,n) = Ck(n).
Рассмотрим теперь частный случай п = k. (Второй этап диагонального доказательства Кантора.) Из равенства (J) получаем:
(К)
2.5. Семейства вычислений 127
утверждение же (I) при n = k принимает вид: (L) Если завершается ,то не завершается.
Подставляя (К) в (L), находим: (М) Если завершается Ck (k), то Ck (k) не завершается.
Из этого следует заключить, что вычисление Ck (k) в действительности не завершается. (Ибо, согласно (М), если оно завершается, то оно не завершается!) Невозможно завершить и вычисление A (k, k), поскольку, согласно (К), оно совпадает с Ck (k). То есть наша процедура А оказывается не в состоянии показать, что данное конкретное вычисление Ck (k) не завершается, даже если оно и в самом деле не завершается.
Более того, если нам известно, что процедура А обоснованна, то, значит, нам известно и то, что вычисление Ck (k) не завершается. Иными словами, нам известно нечто, о чем посредством процедуры А мы узнать не могли. Следовательно, сама процедура А с нашим пониманием никак не связана.
В этом месте осторожный читатель, возможно, пожелает перечесть все вышеприведенное доказательство заново, дабы убедиться в том, что он не пропустил какой-нибудь "ловкости рук" с моей стороны. Надо признать, что, на первый взгляд, это доказательство и в самом деле смахивает на фокус, и все же оно полностью допустимо, а при более тщательном изучении лишь выигрывает в убедительности. Мы обнаружили некое вычисление Ck (k), которое, насколько нам известно, не завершается; однако установить этот факт с помощью имеющейся в нашем распоряжении вычислительной процедуры А мы не в состоянии. Это, собственно, и есть теорема Гёделя(-Тьюринга) в необходимом мне виде. Она применима к любой вычислительной процедуре А, предназначенной для установления невозможности завершить вычисление, - коль скоро нам известно, что упомянутая процедура обоснованна. Можно заключить, что для однозначного установления факта незавершаемости вычисления не будет вполне достаточным ни один из заведомо обоснованных наборов вычислительных правил (такой, например, как процедура А), поскольку существуют незавершающиеся вычисления (например, Ck (k)), на которые эти правила не распространяются. Более того, поскольку на основании того, что нам известно о процедуре А и об ее обоснованности, мы действительно можем
128 Глава 2
составить вычисление Ck (k), которое, очевидно, никогда не завершается, мы вправе заключить, что процедуру А никоим образом нельзя считать формализацией процедур, которыми располагают математики для установления факта незавершаемости вычисления, вне зависимости от конкретной природы А. Вывод: У Для установления математической истины математики не
применяют заведомо обоснованные алгоритмы. Мне представляется, что к такому выводу неизбежно должен прийти всякий логически рассуждающий человек. Однако многие до сих пор предпринимают попытки этот вывод опровергнуть (выдвигая возражения, обобщенные мною под номерами Q1 - Q20 в §2.6 и §2.10), и, разумеется, найдется ничуть не меньше желающих оспорить вывод более строгий, суть которого сводится к тому, что мыслительная деятельность непременно оказывается связана с некими феноменами, носящими фундаментально невычислительный характер. Вы, возможно, уже спрашиваете себя, каким же это образом подобные математические рассуждения об абстрактной природе вычислений могут способствовать объяснению принципов функционирования человеческого мозга. Какое такое отношение имеет все вышесказанное к проблеме осмысленного осознания? Дело в том, что, благодаря этим математическим рассуждениям, мы и впрямь можем прояснить для себя некие весьма важные аспекты такого свойства мышления, как понимание - в терминах общей вычислимости, - а как было показано в § 1.12, свойство понимания связано с осмысленным осознанием самым непосредственным образом. Предшествующее рассуждение действительно носит в основном математический характер, и связано это с необходимостью подчеркнуть одно очень существенное обстоятельство: алгоритм А участвует здесь на двух совершенно различных уровнях. С одной стороны, это просто некий алгоритм, обладающий определенными свойствами; с другой стороны, получается, что на самом-то деле А можно рассматривать как "алгоритм, которым пользуемся мы сами" в процессе установления факта незавершаемости того или иного вычисления. Так что в вышеприведенном рассуждении речь идет не только и не столько о вычислениях. Речь идет также и о том, каким образом мы используем нашу способность к осмысленному пониманию для составления заключения об истинности какого-либо математического утверждения - в данном случае утверждения о незавершаемости вычисления Ck (k).