
- •Пенроуз р. Тени разума: в поисках науки о сознании. 1994
- •Часть I. Почему для понимания разума необходима новая физика?
- •Глава 1. Сознание и вычисление 27
- •Глава 2. Гёделевское доказательство 111
- •Глава 3. О невычислимости в математическом мышлении 206
- •Часть II. Новая физика, необходимая для понимания разума в поисках невычислительной физики разума
- •Глава 4. Есть ли в классической физике место разуму? 339
- •Глава 5. Структура квантового мира 373
- •Глава 6. Квантовая теория и реальность 474
- •Глава 7. Квантовая теория и мозг 534
- •Глава 8. Возможные последствия 598
- •Часть I
- •Часть I
- •1.1. Разум и наука
- •1.2. Спасут ли роботы этот безумный мир?
- •1.2. Спасут ли роботы этот безумный мир? 31
- •1.2. Спасут ли роботы этот безумный мир? 33
- •1.3. Вычисление и сознательное мышление
- •1.3. Вычисление и сознательное мышление 35
- •1.3. Вычисление и сознательное мышление 37
- •1.3. Вычисление и сознательное мышление 39
- •1.4. Физикализм и ментализм 41
- •1.4. Физикализм и ментализм
- •1.5. Вычисление: нисходящие и восходящие процедуры
- •1.5. Вычисление: нисходящие и восходящие процедуры 43
- •1.5. Вычисление: нисходящие и восходящие процедуры 45
- •1.7. Хаос
- •1.7. Хаос 49
- •1.7. Хаос 51
- •1.8. Аналоговые вычисления
- •1.8. Аналоговые вычисления 53
- •1.8. Аналоговые вычисления 55
- •1.9. Невычислительные процессы
- •1.9. Невычислительные процессы 57
- •1.9. Невычислительные процессы 59
- •1.9. Невычислительные процессы
- •Глава I
- •1.9. Невычислительные процессы 65
- •Глава I
- •1.10. Завтрашний день
- •1.10. Завтрашний день 67
- •Глава I
- •1.11. Обладают ли компьютеры правами и несут ли ответственность?
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 71
- •1.12. "Осознание", "понимание", "сознание", "интеллект"
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 73
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 75
- •1.13. Доказательство Джона Серла 77
- •1.13. Доказательство Джона Серла
- •1.14. Некоторые проблемы вычислительной модели 79
- •1.14. Некоторые проблемы вычислительной модели 81
- •Глава I
- •1.16. Доказательство на основании теоремы Гёделя 89
- •1.17. Платонизм или мистицизм?
- •1.17. Платонизм или мистицизм? 91
- •1.18. Почему именно математическое понимание?
- •1.18. Почему именно математическое понимание? 93
- •1.19. Какое отношение имеет теорема Гёделя к "бытовым" действиям?
- •1.20. Мысленная визуализация и виртуальная реальность 101
- •1.20. Мысленная визуализация и виртуальная реальность 103
- •2.1. Теорема Гёделя и машины Тьюринга
- •2.1. Теорема Гёделя и машины Тьюринга 113
- •2.2. Вычисления
- •2.2. Вычисления 115
- •2.3. Незавершающиеся вычисления
- •Глава 2
- •2.6. Возможные формальные возражения против & 129
- •2.6. Возможные формальные возражения против
- •2.6. Возможные формальные возражения против & 133
- •2.6. Возможные формальные возражения против 135
- •2.6. Возможные формальные возражения против 137
- •2.6. Возможные формальные возражения против 139
- •2.6. Возможные формальные возражения против 141
- •2.6. Возможные формальные возражения против 143
- •2.8. Условие -непротиворечивости 151
- •2.8. Условие -непротиворечивости
- •2.8. Условие -непротиворечивости 153
- •2.9. Формальные системы и алгоритмическое доказательство
- •2.10. Возможные формальные возражения против (продолжение)
- •2.10. Возможные формальные возражения против 159
- •2.10. Возможные формальные возражения против 161
- •2.10. Возможные формальные возражения против 165
- •2.10. Возможные формальные возражения против 167
- •2.10. Возможные формальные возражения против 169
- •2.10. Возможные формальные возражения против 171
- •2.10. Возможные формальные возражения против 173
- •2.10. Возможные формальные возражения против 175
- •2.10. Возможные формальные возражения против 177
- •2.10. Возможные формальные возражения против 179
- •2.10. Возможные формальные возражения против 181
- •2.10. Возможные формальные возражения против 183
- •2.10. Возможные формальные возражения против 185
- •2.10. Возможные формальные возражения против 187
- •2.10. Возможные формальные возражения против 189
- •2.10. Возможные формальные возражения против 191
- •3.1. Гёдель и Тьюринг
- •3.1. Гёдель и Тьюринг 207
- •3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
- •3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
- •3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
- •3.5. Может ли алгоритм быть непознаваемым?
- •3.5. Может ли алгоритм быть непознаваемым? 231
- •3.5. Может ли алгоритм быть непознаваемым? 233
- •3.6. Естественный отбор или промысел Господень?
- •3.6. Естественный отбор или промысел Господень? 235
- •3.7. Алгоритм или алгоритмы?
- •3.7. Алгоритм или алгоритмы? 237
- •3.9. Алгоритмы обучения 243
- •3.9. Алгоритмы обучения
- •3.9. Алгоритмы обучения 245
- •3.11. Как обучаются роботы? 249
- •3.11. Как обучаются роботы?
- •3.11. Как обучаются роботы? 251
- •3.13. Механизмы математического поведения робота 257
- •3.13. Механизмы математического поведения робота 259
- •3.14. Фундаментальное противоречие 261
- •3.14. Фундаментальное противоречие
- •3.14. Фундаментальное противоречие 263
- •3.15. Способы устранения фундаментального противоречия
- •3.16. Необходимо ли роботу верить в механизмы м?
- •3.16. Необходимо ли роботу верить в механизмы м? 267
- •3.16. Необходимо ли роботу верить в механизмы м? 269
- •3.17. Робот ошибается и робот "имеет в виду"?
- •3.17. Робот ошибается и робот "имеет в виду"? 271
- •3.19. Исключение ошибочных -утверждений 275
- •3.19. Исключение ошибочных -утверждений
- •3.21. Окончателен ли приговор?
- •3.21. Окончателен ли приговор? 285
- •3.22. Спасет ли вычислительную модель разума хаос? 287
- •3.23. Reductio ad absurdum - воображаемый диалог 291
- •3.23. Reductio ad absurdum - воображаемый диалог 293
- •3.23. Reductio ad absurdum - воображаемый диалог 295
- •3.23. Reductio ad absurdum - воображаемый диалог 297
- •3.23. Reductio ad absurdum - воображаемый диалог 301
- •3.24. Не парадоксальны ли наши рассуждения?
- •3.24. Не парадоксальны ли наши рассуждения? 305
- •3.24. Не парадоксальны ли наши рассуждения? 307
- •3.25. Сложность в математических доказательствах 309
- •3.25. Сложность в математических доказательствах
- •3.25. Сложность в математических доказательствах 311
- •3.26. Разрыв вычислительных петель 313
- •3.26. Разрыв вычислительных петель
- •3.26. Разрыв вычислительных петель 315
- •3.26. Разрыв вычислительных петель 317
- •3.27. Вычислительная математика: процедуры нисходящие или восходящие?
- •3.28. Заключение
- •3.28. Заключение 323
- •3.28. Заключение 325
- •3.28. Заключение 327
- •3.28. Заключение 329
- •3.28. Заключение 331
- •3.28. Заключение 333
- •3.28. Заключение 335
- •Часть II
- •4.1. Разум и физические законы
- •4.1. Разум и физические законы 341
- •4.2. Вычислимость и хаос в современной физике
- •4.2. Вычислимость и хаос в современной физике 343
- •4.4. Эйнштейнов наклон 345
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 347
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 355
- •Глава 4
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 359
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 361
- •4.5. Вычисления и физика 363
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 367
- •4.5. Вычисления и физика 369
- •4.5. Вычисления и физика 371
- •5.1. Квантовая теория: головоломки и парадоксы
- •5.1. Квантовая теория: головоломки и парадоксы 375
- •5.2. Задача Элитцура - Вайдмана об испытании бомб 377
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры 383
- •5.3. Магические додекаэдры 385
- •Глава 5
- •Глава 5
- •Глава 5
- •5.6. Основные правила квантовой теории
- •5.6. Основные правила квантовой теории 403
- •5.7. Унитарная эволюция u 405
- •5.7. Унитарная эволюция u
- •5.7. Унитарная эволюция u 407
- •5.7. Унитарная эволюция u 409
- •Глава 5
- •5.8. Редукция r вектора состояния
- •5.8. Редукция r вектора состояния 411
- •5.8. Редукция r вектора состояния 413
- •Глава 5
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 421
- •5.10. Квантовая теория спина. Сфера Римана
- •5. . Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана 427
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 429
- •5.12. Гильбертово пространство 433
- •5.12. Гильбертово пространство
- •5. / 2. Гильбертово пространство
- •Глава 5
- •5.12. Гильбертово пространство 437
- •5.13. Описание редукции r в терминах гильбертова пространства
- •5.14. Коммутирующие измерения
- •5.15. Квантовомеханическое "и"
- •5.16. Ортогональность произведений состояний
- •5.17. Квантовая сцепленность
- •5.17. Квантовая сцепленность 451
- •5.17. Квантовая сцепленность 453
- •5.17. Квантовая сцепленность 455
- •5.17. Квантовая сцепленность 457
- •Глава 5
- •5.18. Объяснение загадки магических додекаэдров
- •5.18. Объяснение загадки магических додекаэдров 459
- •5.18. Объяснение загадки магических додекаэдров 463
- •5.18. Объяснение загадки магических додекаэдров 465
- •6.1. Является ли r реальным процессом?
- •6.1. Является ли r реальным процессом? 475
- •6.1. Является ли r реальным процессом? 477
- •6.2. О множественности миров 479
- •6.2. О множественности миров
- •6.2. О множественности миров 481
- •6.3. Не принимая вектор всерьез
- •6.3. Не принимая вектор всерьез 483
- •6.3. Не принимая вектор всерьез 485
- •6.4. Матрица плотности
- •6.4. Матрица плотности 489
- •6.4. Матрица плотности 491
- •6.4. Матрица плотности 493
- •6.4. Матрица плотности 495
- •6.5. Матрицы плотности для эпр-пар
- •6.5. Матрицы плотности для эпр-пар 497
- •6.6. Fapp-объяснение процедуры r 499
- •6.6. Fapp-объяснение процедуры r
- •6.6. Fapp-объяснение процедуры r 503
- •6.6. Fapp-объяснение процедуры r 505
- •6.7. Fapp-объяснение правила квадратов модулей
- •6.7. Fapp-объяснение правила квадратов модулей 507
- •6.9. А теперь попробуем принять действительно всерьез
- •Глава 6
- •6.10. Гравитационная редукция вектора состояния 515
- •6.10. Гравитационная редукция вектора состояния
- •6. 10. Гравитационная редукция вектора состояния 517
- •6.11. Абсолютные единицы 519
- •6.11. Абсолютные единицы
- •6.12. Новый критерий 521
- •6.12, Новый критерий
- •6.12. Новый критерий 523
- •6.12. Новый критерий 525
- •6.12. Новый критерий 527
- •6.12. Новый критерий 529
- •6.12. Новый критерий 531
- •7.2. Нейроны, синапсы и компьютеры
- •7.2. Нейроны, синапсы и компьютеры 541
- •7.2. Нейроны, синапсы и компьютеры 543
- •7.3. Квантовые вычисления
- •7.3. Квантовые вычисления 545
- •7.4. Цитоскелет и микротрубочки 547
- •7.4. Цитоскелет и микротрубочки
- •7.4. Цитоскелет и микротрубочки 549
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 553
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 557
- •7.4. Цитоскелет и микротрубочки
- •7.5. Квантовая когерентность внутри микротрубочек 561
- •7.5. Квантовая когерентность внутри микротрубочек
- •7.5. Квантовая когерентность внутри микротрубочек 563
- •7.6. Микротрубочки и сознание
- •7.6. Микротрубочки и сознание 565
- •7.7. Модель разума
- •7.7. Модель разума 569
- •7.7. Модель разума 571
- •7.7. Модель разума 573
- •7.8. Невычислимость в квантовой гравитации (1)
- •7.8. Невычислимость в квантовой гравитации (1) 577
- •7.9. Машины с оракулом и физические законы
- •7.9. Машины с оракулом и физические законы 579
- •7.10. Невычислимость в квантовой гравитации (2) 581
- •7.10. Невычислимость в квантовой гравитации (2)
- •7.10. Невычислимость в квантовой гравитации (2) 583
- •7.11. Время и сознательное восприятие
- •7.11. Время и сознательное восприятие 585
- •Глава 7
- •7.11. Время и сознательное восприятие 587
- •7.11. Время и сознательное восприятие 589
- •8.1. Искусственные разумные "устройства"
- •8.1. Искусственные разумные "устройства" 599
- •8.1. Искусственные разумные "устройства" 601
- •8.2. Что компьютеры умеют делать хорошо... И что не очень
- •8.3. Эстетика и т. Д.
- •8.4. Опасности компьютерных технологий
- •8.4. Опасности компьютерных технологий 611
- •8.5. Неправильные выборы 613
- •8.5. Неправильные выборы
- •8.5. Неправильные выборы 615
- •8.6. Физический феномен сознания 617
- •8.6. Физический феномен сознания
- •8.6. Физический феномен сознания 619
- •8.6. Физический феномен сознания 621
- •8.6. Физический феномен сознания 623
- •8.7. Три мира и три загадки 625
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 627
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 631
- •8.7. Три мира и три загадки 633
- •8.7. Три мира и три загадки 635
- •8.7. Три мира и три загадки 637
- •8.7. Три мира и три загадки 639
8.7. Три мира и три загадки 633
ром физических объектов. Надеюсь также, что само наличие такой взаимосвязи поможет скептикам отнестись к платоновскому миру именно как к "миру" несколько более серьезно, нежели они полагали для себя возможным прежде. Может быть, кто-то даже шагнет еще дальше, на что я рамках данного обсуждения не осмелился. Возможно, реальностью в платоновском смысле следует наделить и прочие абстрактные концепции, а не только математические. Сам Платон настаивал, что идеальные понятия "добра" и "красоты" реальны (см. § 8.3) ничуть не меньше, чем математические идеи. Лично у меня такая возможность никакого неприятия не вызывает, однако в моих размышлениях здесь она пока не играет сколько-нибудь серьезной роли. Я не уделил вопросам этики, морали и эстетики надлежащего внимания, однако это не повод для того; чтобы напрочь отказывать им в той же "реальности", какая досталась концепциям, которые рассмотрения удостоились. Безусловно, есть множество важных и разнообразных вопросов, которые следует изучить в этой связи, однако цели, что я ставил перед собой при написании этой конкретной книги, несколько уже
Не уделил я большого внимания и собственно загадке (стрелка 1 на рис. 8.1) той непостижимой и абсолютной роли, что платоновский математический мир играет в физическом мире, - даже того, что получили другие две, о которых мы имеем еще меньшее представление. В первой части я обращался, по большей части, к вопросам, поднимаемым третьей стрелкой: загадкой нашего восприятия математического мира, т. е. выяснением природы процесса, посредством которого сознательное размышление способно "порождать", словно из ничего, те самые платоновские математические формы. (Как будто совершенные математические формы суть лишь тени наших несовершенных мыслей.) Такой взгляд на платоновский мир - как на продукт нашего сознания - весьма серьезно противоречит воззрениям самого Платона. Для Платона мир совершенных форм первичен, поскольку лежит вне времени и не зависит от человека. В истинно платоновском представлении мою третью стрелку на рис. 8.1 следует, очевидно, направить не вверх, а вниз: от мира совершенных форм к миру нашего сознания. Если же мы рассматриваем математический мир как продукт наших способов мышления, то это будет уже не платоновское представление, которого я здесь придерживаюсь, а самое настоящее кантианство.
634 Глава 8
Возможно, кому-то захочется аналогичным образом оспорить и направления остальных моих стрелок. Например, епископ Беркли, скорее всего, предпочел бы развернуть вторую стрелку, направить ее от ментального мира к миру физическому, поскольку, согласно его представлениям, "физическая реальность" есть лишь тень нашего ментального существования. Есть и такие (так называемые "номиналисты"), кто выступил бы за разворот первой стрелки, так как, по их мнению, мир математики является не более чем отражением аспектов мира физической реальности. Я сам, как явствует из этой книги, являюсь весьма решительным противником разворота первых двух стрелок; возможно, не менее очевидно и то, что я чувствую себя несколько неловко, будучи вынужден направить третью стрелку на рис. 8.1 в направлении, явно кантианском! Для меня мир совершенных форм первичен (как и для Платона) - существование этого мира является чуть ли не логической необходимостью, - оба же прочих мира суть его тени.
По причине такого расхождения во мнениях относительно того, какой из миров на рис. 8.1 следует считать первичным, а какие вторичными, я порекомендовал бы взглянуть на стрелки несколько иначе. Существенным качеством стрелок на рис. 8.1 является не столько их направление, сколько тот факт, что каждая представляет такое соответствие, при котором лишь малая область одного мира "порождает" весь следующий мир целиком. Что касается первой стрелки: мне много раз указывали на то, что огромная часть мира математики (если судить по результатам деятельности самих математиков) если и имеет какое-то отношение к действительному физическому поведению, то весьма незначительное. Получите: в основе структуры нашей физической Вселенной может лежать лишь крохотная часть платоновского мира. Аналогичным образом, вторая стрелка символизирует тот факт, что существование нашего ментального мира есть продукт очень малой части мира физического - той части, где имеются в точности те условия, что необходимы для возникновения сознания, как, например, в мозге человека. Точно так же третья стрелка захватывает весьма небольшую область мира ментальной активности, а именно ту, что "заведует" абсолютными и вневременными вопросами - в особенности, математической истиной. Наша с вами ментальная жизнь проходит, по большей части, совсем в других местах.