
- •Пенроуз р. Тени разума: в поисках науки о сознании. 1994
- •Часть I. Почему для понимания разума необходима новая физика?
- •Глава 1. Сознание и вычисление 27
- •Глава 2. Гёделевское доказательство 111
- •Глава 3. О невычислимости в математическом мышлении 206
- •Часть II. Новая физика, необходимая для понимания разума в поисках невычислительной физики разума
- •Глава 4. Есть ли в классической физике место разуму? 339
- •Глава 5. Структура квантового мира 373
- •Глава 6. Квантовая теория и реальность 474
- •Глава 7. Квантовая теория и мозг 534
- •Глава 8. Возможные последствия 598
- •Часть I
- •Часть I
- •1.1. Разум и наука
- •1.2. Спасут ли роботы этот безумный мир?
- •1.2. Спасут ли роботы этот безумный мир? 31
- •1.2. Спасут ли роботы этот безумный мир? 33
- •1.3. Вычисление и сознательное мышление
- •1.3. Вычисление и сознательное мышление 35
- •1.3. Вычисление и сознательное мышление 37
- •1.3. Вычисление и сознательное мышление 39
- •1.4. Физикализм и ментализм 41
- •1.4. Физикализм и ментализм
- •1.5. Вычисление: нисходящие и восходящие процедуры
- •1.5. Вычисление: нисходящие и восходящие процедуры 43
- •1.5. Вычисление: нисходящие и восходящие процедуры 45
- •1.7. Хаос
- •1.7. Хаос 49
- •1.7. Хаос 51
- •1.8. Аналоговые вычисления
- •1.8. Аналоговые вычисления 53
- •1.8. Аналоговые вычисления 55
- •1.9. Невычислительные процессы
- •1.9. Невычислительные процессы 57
- •1.9. Невычислительные процессы 59
- •1.9. Невычислительные процессы
- •Глава I
- •1.9. Невычислительные процессы 65
- •Глава I
- •1.10. Завтрашний день
- •1.10. Завтрашний день 67
- •Глава I
- •1.11. Обладают ли компьютеры правами и несут ли ответственность?
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 71
- •1.12. "Осознание", "понимание", "сознание", "интеллект"
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 73
- •1.12. "Осознание", "понимание", "сознание", "интеллект" 75
- •1.13. Доказательство Джона Серла 77
- •1.13. Доказательство Джона Серла
- •1.14. Некоторые проблемы вычислительной модели 79
- •1.14. Некоторые проблемы вычислительной модели 81
- •Глава I
- •1.16. Доказательство на основании теоремы Гёделя 89
- •1.17. Платонизм или мистицизм?
- •1.17. Платонизм или мистицизм? 91
- •1.18. Почему именно математическое понимание?
- •1.18. Почему именно математическое понимание? 93
- •1.19. Какое отношение имеет теорема Гёделя к "бытовым" действиям?
- •1.20. Мысленная визуализация и виртуальная реальность 101
- •1.20. Мысленная визуализация и виртуальная реальность 103
- •2.1. Теорема Гёделя и машины Тьюринга
- •2.1. Теорема Гёделя и машины Тьюринга 113
- •2.2. Вычисления
- •2.2. Вычисления 115
- •2.3. Незавершающиеся вычисления
- •Глава 2
- •2.6. Возможные формальные возражения против & 129
- •2.6. Возможные формальные возражения против
- •2.6. Возможные формальные возражения против & 133
- •2.6. Возможные формальные возражения против 135
- •2.6. Возможные формальные возражения против 137
- •2.6. Возможные формальные возражения против 139
- •2.6. Возможные формальные возражения против 141
- •2.6. Возможные формальные возражения против 143
- •2.8. Условие -непротиворечивости 151
- •2.8. Условие -непротиворечивости
- •2.8. Условие -непротиворечивости 153
- •2.9. Формальные системы и алгоритмическое доказательство
- •2.10. Возможные формальные возражения против (продолжение)
- •2.10. Возможные формальные возражения против 159
- •2.10. Возможные формальные возражения против 161
- •2.10. Возможные формальные возражения против 165
- •2.10. Возможные формальные возражения против 167
- •2.10. Возможные формальные возражения против 169
- •2.10. Возможные формальные возражения против 171
- •2.10. Возможные формальные возражения против 173
- •2.10. Возможные формальные возражения против 175
- •2.10. Возможные формальные возражения против 177
- •2.10. Возможные формальные возражения против 179
- •2.10. Возможные формальные возражения против 181
- •2.10. Возможные формальные возражения против 183
- •2.10. Возможные формальные возражения против 185
- •2.10. Возможные формальные возражения против 187
- •2.10. Возможные формальные возражения против 189
- •2.10. Возможные формальные возражения против 191
- •3.1. Гёдель и Тьюринг
- •3.1. Гёдель и Тьюринг 207
- •3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?
- •3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?
- •3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
- •3.5. Может ли алгоритм быть непознаваемым?
- •3.5. Может ли алгоритм быть непознаваемым? 231
- •3.5. Может ли алгоритм быть непознаваемым? 233
- •3.6. Естественный отбор или промысел Господень?
- •3.6. Естественный отбор или промысел Господень? 235
- •3.7. Алгоритм или алгоритмы?
- •3.7. Алгоритм или алгоритмы? 237
- •3.9. Алгоритмы обучения 243
- •3.9. Алгоритмы обучения
- •3.9. Алгоритмы обучения 245
- •3.11. Как обучаются роботы? 249
- •3.11. Как обучаются роботы?
- •3.11. Как обучаются роботы? 251
- •3.13. Механизмы математического поведения робота 257
- •3.13. Механизмы математического поведения робота 259
- •3.14. Фундаментальное противоречие 261
- •3.14. Фундаментальное противоречие
- •3.14. Фундаментальное противоречие 263
- •3.15. Способы устранения фундаментального противоречия
- •3.16. Необходимо ли роботу верить в механизмы м?
- •3.16. Необходимо ли роботу верить в механизмы м? 267
- •3.16. Необходимо ли роботу верить в механизмы м? 269
- •3.17. Робот ошибается и робот "имеет в виду"?
- •3.17. Робот ошибается и робот "имеет в виду"? 271
- •3.19. Исключение ошибочных -утверждений 275
- •3.19. Исключение ошибочных -утверждений
- •3.21. Окончателен ли приговор?
- •3.21. Окончателен ли приговор? 285
- •3.22. Спасет ли вычислительную модель разума хаос? 287
- •3.23. Reductio ad absurdum - воображаемый диалог 291
- •3.23. Reductio ad absurdum - воображаемый диалог 293
- •3.23. Reductio ad absurdum - воображаемый диалог 295
- •3.23. Reductio ad absurdum - воображаемый диалог 297
- •3.23. Reductio ad absurdum - воображаемый диалог 301
- •3.24. Не парадоксальны ли наши рассуждения?
- •3.24. Не парадоксальны ли наши рассуждения? 305
- •3.24. Не парадоксальны ли наши рассуждения? 307
- •3.25. Сложность в математических доказательствах 309
- •3.25. Сложность в математических доказательствах
- •3.25. Сложность в математических доказательствах 311
- •3.26. Разрыв вычислительных петель 313
- •3.26. Разрыв вычислительных петель
- •3.26. Разрыв вычислительных петель 315
- •3.26. Разрыв вычислительных петель 317
- •3.27. Вычислительная математика: процедуры нисходящие или восходящие?
- •3.28. Заключение
- •3.28. Заключение 323
- •3.28. Заключение 325
- •3.28. Заключение 327
- •3.28. Заключение 329
- •3.28. Заключение 331
- •3.28. Заключение 333
- •3.28. Заключение 335
- •Часть II
- •4.1. Разум и физические законы
- •4.1. Разум и физические законы 341
- •4.2. Вычислимость и хаос в современной физике
- •4.2. Вычислимость и хаос в современной физике 343
- •4.4. Эйнштейнов наклон 345
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 347
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 355
- •Глава 4
- •4.4. Эйнштейнов наклон
- •4.4. Эйнштейнов наклон 359
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 361
- •4.5. Вычисления и физика 363
- •4.5. Вычисления и физика
- •4.5. Вычисления и физика 367
- •4.5. Вычисления и физика 369
- •4.5. Вычисления и физика 371
- •5.1. Квантовая теория: головоломки и парадоксы
- •5.1. Квантовая теория: головоломки и парадоксы 375
- •5.2. Задача Элитцура - Вайдмана об испытании бомб 377
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры
- •5.3. Магические додекаэдры 383
- •5.3. Магические додекаэдры 385
- •Глава 5
- •Глава 5
- •Глава 5
- •5.6. Основные правила квантовой теории
- •5.6. Основные правила квантовой теории 403
- •5.7. Унитарная эволюция u 405
- •5.7. Унитарная эволюция u
- •5.7. Унитарная эволюция u 407
- •5.7. Унитарная эволюция u 409
- •Глава 5
- •5.8. Редукция r вектора состояния
- •5.8. Редукция r вектора состояния 411
- •5.8. Редукция r вектора состояния 413
- •Глава 5
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 421
- •5.10. Квантовая теория спина. Сфера Римана
- •5. . Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана
- •5.10. Квантовая теория спина. Сфера Римана 427
- •Глава 5
- •5.10. Квантовая теория спина. Сфера Римана 429
- •5.12. Гильбертово пространство 433
- •5.12. Гильбертово пространство
- •5. / 2. Гильбертово пространство
- •Глава 5
- •5.12. Гильбертово пространство 437
- •5.13. Описание редукции r в терминах гильбертова пространства
- •5.14. Коммутирующие измерения
- •5.15. Квантовомеханическое "и"
- •5.16. Ортогональность произведений состояний
- •5.17. Квантовая сцепленность
- •5.17. Квантовая сцепленность 451
- •5.17. Квантовая сцепленность 453
- •5.17. Квантовая сцепленность 455
- •5.17. Квантовая сцепленность 457
- •Глава 5
- •5.18. Объяснение загадки магических додекаэдров
- •5.18. Объяснение загадки магических додекаэдров 459
- •5.18. Объяснение загадки магических додекаэдров 463
- •5.18. Объяснение загадки магических додекаэдров 465
- •6.1. Является ли r реальным процессом?
- •6.1. Является ли r реальным процессом? 475
- •6.1. Является ли r реальным процессом? 477
- •6.2. О множественности миров 479
- •6.2. О множественности миров
- •6.2. О множественности миров 481
- •6.3. Не принимая вектор всерьез
- •6.3. Не принимая вектор всерьез 483
- •6.3. Не принимая вектор всерьез 485
- •6.4. Матрица плотности
- •6.4. Матрица плотности 489
- •6.4. Матрица плотности 491
- •6.4. Матрица плотности 493
- •6.4. Матрица плотности 495
- •6.5. Матрицы плотности для эпр-пар
- •6.5. Матрицы плотности для эпр-пар 497
- •6.6. Fapp-объяснение процедуры r 499
- •6.6. Fapp-объяснение процедуры r
- •6.6. Fapp-объяснение процедуры r 503
- •6.6. Fapp-объяснение процедуры r 505
- •6.7. Fapp-объяснение правила квадратов модулей
- •6.7. Fapp-объяснение правила квадратов модулей 507
- •6.9. А теперь попробуем принять действительно всерьез
- •Глава 6
- •6.10. Гравитационная редукция вектора состояния 515
- •6.10. Гравитационная редукция вектора состояния
- •6. 10. Гравитационная редукция вектора состояния 517
- •6.11. Абсолютные единицы 519
- •6.11. Абсолютные единицы
- •6.12. Новый критерий 521
- •6.12, Новый критерий
- •6.12. Новый критерий 523
- •6.12. Новый критерий 525
- •6.12. Новый критерий 527
- •6.12. Новый критерий 529
- •6.12. Новый критерий 531
- •7.2. Нейроны, синапсы и компьютеры
- •7.2. Нейроны, синапсы и компьютеры 541
- •7.2. Нейроны, синапсы и компьютеры 543
- •7.3. Квантовые вычисления
- •7.3. Квантовые вычисления 545
- •7.4. Цитоскелет и микротрубочки 547
- •7.4. Цитоскелет и микротрубочки
- •7.4. Цитоскелет и микротрубочки 549
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 553
- •Глава 7
- •7.4. Цитоскелет и микротрубочки
- •Глава 7
- •7.4. Цитоскелет и микротрубочки 557
- •7.4. Цитоскелет и микротрубочки
- •7.5. Квантовая когерентность внутри микротрубочек 561
- •7.5. Квантовая когерентность внутри микротрубочек
- •7.5. Квантовая когерентность внутри микротрубочек 563
- •7.6. Микротрубочки и сознание
- •7.6. Микротрубочки и сознание 565
- •7.7. Модель разума
- •7.7. Модель разума 569
- •7.7. Модель разума 571
- •7.7. Модель разума 573
- •7.8. Невычислимость в квантовой гравитации (1)
- •7.8. Невычислимость в квантовой гравитации (1) 577
- •7.9. Машины с оракулом и физические законы
- •7.9. Машины с оракулом и физические законы 579
- •7.10. Невычислимость в квантовой гравитации (2) 581
- •7.10. Невычислимость в квантовой гравитации (2)
- •7.10. Невычислимость в квантовой гравитации (2) 583
- •7.11. Время и сознательное восприятие
- •7.11. Время и сознательное восприятие 585
- •Глава 7
- •7.11. Время и сознательное восприятие 587
- •7.11. Время и сознательное восприятие 589
- •8.1. Искусственные разумные "устройства"
- •8.1. Искусственные разумные "устройства" 599
- •8.1. Искусственные разумные "устройства" 601
- •8.2. Что компьютеры умеют делать хорошо... И что не очень
- •8.3. Эстетика и т. Д.
- •8.4. Опасности компьютерных технологий
- •8.4. Опасности компьютерных технологий 611
- •8.5. Неправильные выборы 613
- •8.5. Неправильные выборы
- •8.5. Неправильные выборы 615
- •8.6. Физический феномен сознания 617
- •8.6. Физический феномен сознания
- •8.6. Физический феномен сознания 619
- •8.6. Физический феномен сознания 621
- •8.6. Физический феномен сознания 623
- •8.7. Три мира и три загадки 625
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 627
- •8.7. Три мира и три загадки
- •8.7. Три мира и три загадки 631
- •8.7. Три мира и три загадки 633
- •8.7. Три мира и три загадки 635
- •8.7. Три мира и три загадки 637
- •8.7. Три мира и три загадки 639
6.9. А теперь попробуем принять действительно всерьез
Как выяснилось, те точки зрения, что на данный момент претендуют на серьезное отношение к квантовому описанию мира, в действительности всерьез его не принимают. Возможно, квантовый формализм слишком нам чужд, чтобы его можно было с легкостью принимать всерьез, и большинство физиков опасается чересчур сильно в него углубляться. Ведь кроме вектора состояния , эволюционирующего согласно U, пока система остается на квантовом уровне, нам приходится здесь иметь дело с крайне неприятным, дискретным и вероятностным, действием процедуры R, которое, по всей видимости, вызывает дискретные "скачки" вектора , когда квантовые эффекты переходят на классический уровень. Таким образом, если мы намерены предположить, что вектор описывает реальность, то необходимо признать физически реальными и эти скачки, как бы неуютно мы себя в этой связи ни чувствовали. Впрочем, если мы и впрямь
6.9. А теперь попробуем принять всерьез 511
принимаем реальность описания в терминах квантового вектора состояния настолько всерьез, то нам следует быть готовыми к внесению в существующие правила квантовой теории некоторых (предпочтительно очень тонких) изменений, поскольку действие эволюции U, строго говоря, несовместимо с процедурой R и для того, чтобы прикрыть зияющие провалы между описаниями квантового и классического уровней поведения, нам предстоит проделать некоторую деликатную "бумажную работу".
Надо сказать, что за последние годы уже было предпринято несколько попыток построить на основании этих соображений нетрадиционную непротиворечивую теорию. В 1966 году ученые венгерской школы под руководством Карольхази (Будапешт) представили [216] точку зрения, согласно которой реальный физический феномен R-процедуры обусловлен гравитационными эффектами (см. также [227]). Следуя несколько иной линии рассуждения, Филип Перл из Гамильтон-колледжа (Клинтон, шт. Нью-Йорк, США) выдвинул в 1976 году [284] негравитационную теорию, в которой R также фигурировала в качестве реального физического феномена. Позднее, в 1986 году, Джанкарло Гирарди, Альберто Римини и Туллио Вебер предложили новый интересный подход к решению проблемы; подход этот получил весьма положительную оценку самого Джона Белла, вследствие чего не заставили себя ждать многочисленные дальнейшие доработки и усовершенствования оригинальной идеи другими исследователями
Прежде чем мы перейдем в следующих параграфах к изложению моей собственной точки зрения на предмет, немало позаимствовавшей из схемы Гирарди -Римини-Вебера (ГРВ-схемы), будет полезно ознакомиться вкратце с собственно оригиналом. Основная идея состоит в том, что вектор состояния предполагается реальным, а U-процедуры - в основном точными. Тогда, согласно уравнению Шрёдингера, волновая функция отдельной, изначально локализованной свободной частицы стремится с течением времени распространиться во всех направлениях в пространстве (см. рис. 6.1). (Вспомним, что волновая функция частицы определяет комплексные весовые коэффициенты для различных возможных местоположений этой самой частицы. Графики на рис. 6.1 мы можем рассматривать как схематические описания поведения вещественных частей этих весовых коэффициентов.) Таким образом, со временем частица становит-
512