Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word.docx
Скачиваний:
15
Добавлен:
28.10.2018
Размер:
198.12 Кб
Скачать

13Получение графена

[править]

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Основная статья: Графен

Существует несколько способов для получения графена, которые можно разделить на три большие группы. К первой группе относятся механические методы получения графена, основной из которых механическое отшелушивание, который на настоящий момент (2011) является наиболее распространённым методом для производства больших образцов с размером ~10 мкм пригодных для транспортных и оптических измерений. Ко второй группе методов относят химические методы, которые отличаются большим процентом выхода материала, но малыми размерами плёнок ~10-100 нм. К последней группе относятся эпитаксиальные методы и метод термического разложения SiC подложки благодаря которым можно вырастить плёнки графена.

Содержание

[убрать]

  • 1 Механические методы

  • 2 Химические методы

  • 3 Эпитаксия и разложение

  • 4 Другие методы

  • 5 См. также

  • 6 Примечания

[Править] Механические методы

Графен

Уравнение Дирака для графена

Введение ...

Математическая формулировка ...

[показать]Основа

Квантовая механика · Уравнение Дирака Нейтрино · (2+1)-мерная КЭД · Постоянная тонкой структуры · Фаза Берри · Углеродные нанотрубки

[показать]Фундаментальные понятия

Зонная структура · Уравнение Дирака · Киральность · Гексагональная решётка · Волновая функция · Точка электронейтральности · Видимость графена · Фаза Берри

[показать]Получение и технология

Получение графена · Механическое отшелушивание · Химическое расщепление графита · Рост графеновых плёнок · Подвешенный графен · Верхний затвор

[показать]Применения

Графеновый полевой транзистор Графеновые наноленты

[показать]Транспортные свойства

Электроны и дырки · Проводимость · Фононы· Парадокс Клейна · Линза Веселаго · 1/f · Дробовой шум Случайный телеграфный сигнал · p — n переход · Ферми жидкость

[показать]Магнитное поле

Магнетосопротивление · Осцилляции Шубникова — деГааза · КЭХ · Спиновый квантовый эффект Холла · ДКЭХ · Осцилляции Вейса · Магнетоэкситоны · Сверхпроводимость · Слабая локализация · Эффект Ааронова — Бома

[показать]Оптика графена

Рамановское рассеяние света

[показать]Известные учёные

Андре Гейм

См. также «Физический портал»

Рис. 1. Кусочки тонких слоёв графита, полученные в процессе отшелушивания, на поверхности липкой ленты.

При механическом воздействии на высокоориентированный пиролитический графит или киш-графит[1] можно получить плёнки графена вплоть до ~100 мкм.[2] Сначала тонкие слои графита помещают между липкими лентами и отщепляют раз за разом тонкие плёнки графита, пока не будет получен достаточно тонкий слой (среди многих плёнок могут попадаться и однослойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита и графена прижимают к подложке окисленного кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм).[3] Найденные с помощью оптического микроскопа (они слабо видны при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. С помощью атомно-силового микроскопа определяют реальную толщину плёнки графита (она может варьироваться в пределах 1 нм для графена). Графен можно также определить при помощи рамановского рассеяния света[4] или измерением квантового эффекта Холла[5][1]. Используя электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений (холловский мост для магнитотранспортных измерений).

Альтернативный метод предложен в работе[6]. Метод заключается в том, что окисленную подложку кремния покрывают эпоксидным клеем (в работе использовался слой толщиной ~10 мкм) и тонкую пластинку графита прижимают к клею при помощи пресса. После удаления графитовой пластинки с помощью липкой ленты на поверхности клея остаются области с графеном и графитом. Толщину графита определяли с помощью комбинационного рассеяния света и атомно-силовым микроскопом измеряли шероховатость графена, которая оказалась равной всего 0.16 нм (в два раза меньше шероховатости графена на подложке кремния[7]).

В статье[8] предложен метод печати графеновых электрических схем (ранее этот метод использовался для печати тонкоплёночных транзисторов на основе нанотрубок и для органической электроники.[9][10]). Сам процесс печати состоит из последовательного переноса с подложки Si/SiO2 золотых контактов, графена и наконец диэлектрика (PMMA) с металлическим затвором на прозрачную подложку из полиэтилентерефталата (ПЭТФ) предварительно нагретую выше температуры размягчения до 170 °C, благодаря чему контакты, вдавливались в ПЭТФ, а графен приобретает хороший контакт с материалом подложки. При таком методе нанесения графена подвижность не становится меньше, хотя и появляется заметная асимметрия между электронной (μe=10000 см2В−1с−1) и дырочной (μh=4000 см2В−1с−1) областями проводимости. Этот метод пригоден для нанесения графена на любую подложку пригодную, в частности, для оптических измерений.