
- •1)Модели систем и параметры логических элементов.
- •2)Типы выходных каскадов цифровых элементов и узлов.
- •3)Паразитные связи цифровых элементов по цепям питания.
- •4)Вспомогательные элементы цифровых узлов и устройств.
- •5)Приёмы построения узлов и устройств на стандартных цифровых интегральных схем.
- •6)Дешифраторы.
- •7)Шифраторы.
- •8)Мультиплексор
- •9)Демультиплексор
- •11)Компораторы
- •12)Сумматоры
- •13)2-Ыесумматоры с накапливанием суммы, особенности и быстродействие. Схемы и принципы работы сумматора.
- •14)2-10 Сумматоры комбинационного типа.
- •15)Арифметико-логические устройства.
- •16)Одноступенчатые d-тг на логических элементах и-не и одноступенчатые rs-тг, принцип работы, временная диаграмма, уго , d-тг в интегральном исполнении, назначения выводов.
- •18)Синхронные и асинхронные rs-тг 1 и 2 ступенчатые.
- •19)Регистры.
- •19)Классификация регистров, уго, табл. Истинности, наращивание разрядности, универсальные кольцевые регистры сдвига на d u jk - триггерах, примеры схем.
- •20)Регистры в интегральном исполнении, уго, табл. Истинности, наращивание разрядности, построение реверсивных кольцевых регистров сдвига на регистрах в ис.
- •21)Назначение, классификация, характеристики счётчиков
- •22)Синхронные а асинхронные, складывающие и вычитающие счётчики в интегральном исполнении, уго, таблица истинности, временная диаграмма.
- •24)Счётчики на базе регистров сдвига.
- •26) Основные структуры запоминающих устройств
- •27)Озу статического типа.
- •29)Озу динамического типа.
- •30)Микропроцессор и микропроцессорные комплекты.
- •42) Режимы адресации команд та особенности использования.
- •43)Команды передачи управления.
- •44)Этапы программирования мпс. Составление схем алгоритмов.
- •57)Программируемая матричная логика.
- •58)Пмл серии к1556
- •59) Базовые матричные кристаллы
- •60)Классификация базовых матричных кристаллов(бмк).
7)Шифраторы.
Шифраторы выпускаются приоритетными и не приоритетными. У приоритетного шифратора входы имеют разный приоритет. Возбужденный вход с большим приоритетом подавляет действие прежде возбужденного и устанавливает на выходах код, соответ-ствующий своему значению. Шифратор решает задачу, обратную дешифратору: в частности, на его выхо-дах устанавливается двоичный код, соответствующий десятичному номеру воз-бужденного информационного входа. Шифратор может быть организован не только для представления (кодирования) десятичного числа двоичным кодом, но и для выдачи определенного кода (его значение заранее выбирается), например, при нажатии клавиши с соответствующим символом. При появлении этого кода система оповещается о том, что нажата определенная клавиша клавиатуры.
Шифраторы применяются в устройствах, преобразующих один вид кода в другой. При этом вначале дешифрируется комбинация исходного кода, в результате чего на соответствующем выходе дешифратора появляется логическая 1. Это отображение входного кода, значение которого определено номером возбужденного выхода дешифратора, подается на шифратор, организованный с таким расчетом, чтобы каждый входной код вызывал появление заданного выходного кода.
В интегральном исполнении существуют дешифраторы
ИВ-1,ИВ-2 ИВ-3
8вх-3вых 10вх-4вых
8)Мультиплексор
Mультиплексор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.
Аналоговые и цифровые[1][2][3] мультиплексоры значительно различаются по принципу работы. Первые электрически соединяют выбранный вход с выходом (при этом сопротивление между ними невелико — порядка единиц/десятков ом). Вторые же не образуют прямого электрического соединения между выбранным входом и выходом, а лишь «копируют» на выход логический уровень ('0' или '1') с выбранного входа. Аналоговые мультиплексоры иногда называют ключами.[4]
Устройство, противоположное мультиплексору по своей функции, называется демультиплексором. Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных выходов и числом адресных входов действует соотношение , то такой мультиплексор называют полным. Если , то мультиплексор называют неполным. Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, то есть могут блокировать действие всего устройства.
В качестве управляющей схемы обычно используется дешифратор. В цифровых мультиплексорах логические элементы коммутатора и дешифратора обычно объединяются. Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и заканчивая последним.