
- •Екзаменаційні питпння за курсом «тау – частина1»
- •1. Дайте визначення поняття керування?
- •2. Які алгоритми роботи об’єктів курування вам вібомі?
- •3. Що нази вається вектором вихідного стану об’єкта керування?
- •4. Що називаться структурною схемою сау?
- •5. Класифікація систем автоматичного керування?
- •6. Що називається помилкою керування?
- •7. Назвіть основні причини відхилення вектора вихідного стану від необхідного значення?
- •8. Для яких цілей необхідні керуючі впливи?
- •9. Що називаеться керуючим пристроєм?
- •10. Що називається системою автоматичного керування?
- •11. Які принципи керування вам відомі?
- •12. Яка сау називається замкнутою?
- •13. У чому складаеться сутність принципу керування по збурюванню?
- •14. Основні переваги і недоліки сау, побудоватних на бузі принципу керування по збурюванню?
- •15. У чому полягає сутність керування по відхиленню?
- •16. Для яких цілей використовується зворотний зв’язок у сау? Які види зворотних зв’язків вам відомі?
- •17. У чому полягають основні особливості принципу комбінованого керування?
- •18. Які основні переваги і недоліки сау з комбінованим керуванням Вам відомі?
- •19. Що називається статичною характеристикою сау і її елементів?
- •20. Які види статичних характеристик сау Вам відомі?
- •21. Які особливості властиві астатичним елементам?
- •22. Дайте визначення сатичної сау?
- •23. Дайте визначення астатичної сау?
- •24. Які способи з’єднання елементів сау вам відомі?
- •25. Як визначити статичну характеристику сау, що складається з послідовно з’єднаних елементів?
- •26 Як визначити статичну характеристику сау, що складається з паралельно з’єднаних елементів?
- •27. Як визначити статичну характеристику сау при з'єднанні лементів з використанням зворотного зв'язка?
- •28. Для яких цілей використається лінеаризація статичних характеристик сау?
- •29. Опишіть основні принципи лінеаризації статичних характеристик сау?
- •30. Що розуміється під поняттям динамічні режими роботи сау?
- •31.Який математичний апарат використається для аналізу динамічних
- •33. Як представити рівняння руху сау у формі Коші?
- •34.Які методи рішення диференціальних рівнянь Вам відомі?
- •35. Що називається перетворенням Лапласа. Як воно виробляється?
- •36. Які основні властивості перетворення Лапласа Вам відомі?
- •37.Що називається передатною функцією сау?
- •38. Що називається характеристичним рівнянням системи?
- •39. Частотні характеристики сау і їхнє експериментальне визначення?
- •40. Змінні стани і рівняння стану динамічної системи?
- •41. Типові динамічні ланки і їхні рівняння, передатні функції, тимчасові і частотні характеристики?
- •42. Правила структурних перетворень сау і визначення передатних функцій складних систем?
- •43.Застосування теорії графів для визначення передатних функцій складних багатоконтурних сау?
- •44. Прямі показники якості перехідних процесів?
- •45. Оцінка якості перехідних процесів по частотних характеристиках?
- •46. Кореневі критерії оцінки якості перехідних процесів?
- •47. Інтегральні методи оцінки якості перехідних процесів?
- •48. Характеристики основних елементів сау: тиристорний перетворювач, широтно-імпульсний перетворювач, датчик струму, датчик швидкості, електродвигун постійного струму, асинхронний двигун?
- •49. Стійкість сау. Алгебраїчні критерії стійкості?
- •50. Стійкість сау. Частотні критерії стійкості?
- •51. Статистичні характеристики сау і зв'язок між ними?
- •52. Комбіновані аср. Принцип інваріантості?
- •53. Каскадні аср. Розрахунок каскадних аср?
- •54. Взаємозалежні системи регулювання. Методи розрахунку зв'язаних систем регулювання. Принцип автономності?
- •55. Регулювання об'єктів із запізнюванням?
- •56. Системи регулювання нестаціонарними об'єктами?
- •57. Робастні системи керування і чутливість?
- •58. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом другого порядку?
- •59. Синтез сау методом логарифмічних частотних характеристик для об'єктів з астатизмом першого порядку?
- •60. Синтез сау методом логарифмічних частотних характеристик для статичних об'єктів?
- •61. Експрес методи розрахунку настроювання одно контурних систем регулювання?
- •62. Модальне керування в сау?
- •63. Синтез систем керування з регулятором стану?
- •Екзаменаційні питпння за курсом «тау – частина2»
- •2. Нелінійні характеристики (однозначні, неоднозначні) і їхній математичний опис.
- •3. Методи лінеаризації нелінійних характеристик.
- •4. Дослідження нелінійних систем (метод гармонійного балансу).
- •5. Дослідження нелінійних систем (метод фазових траєкторій).
- •6. Нелінійні системи (побудова перехідного процесу по фазовій траєкторії).
- •7. Нелінійні системи (побудова фазових траєкторій методом ізоклін).
- •8. Нелінійні системи (знаходження результуючої статичної характеристики при паралельному, послідовному, зустрічно-паралельному з'єднанні нелінійних елементів).
- •9. Методи дослідження стійкості нелінійних систем. Другий (прямій) метод Ляпунова.
- •10. Методи дослідження стійкості нелінійних систем. Критерій абсолютної стійкості в.М. Попова.
- •11. Поняття про дискретні системи автоматичного керування і їхня класифікація.
- •12. Релейні системи автоматичного керування. Визначення, особливості, призначення, достоїнства й недоліки.
- •13. Особливості динаміки релейних систем автоматичного керування.
- •14. Фазові портрети релейних систем.
- •15. Імпульсні системи автоматичного керування. Визначення, особливості, призначення, класифікація, достоїнства й недоліки.
- •16. Особливості динаміки імпульсних систем автоматичного керування.
- •17. Математичний апарат імпульсних систем (ґратчаста функція, зміщена ґратчаста функція).
- •18. Математичний апарат імпульсних систем (різниця ґратчастих функцій, різницеві рівняння).
- •19. Математичний апарат імпульсних систем (z-перетворення і його основні властивості).
- •20. Передатні функції імпульсного фільтра.
- •21. Цифрові системи автоматичного керування. Визначення, особливості, призначення, достоїнства.
- •23. Опишіть типову структуру одно контурної сау.
- •29. Розрахунок помилок у цас.
- •30. Способи побудови перехідних процесів у цас.
- •31. Порядок синтезу цсу для об'єктів з астатизмом другого порядку.
- •32. Порядок синтезу цсу для об'єктів з астатизмом першого порядку.
- •34. Модальне керування в цсу.
- •35. Поняття оптимальної системи автоматичного керування.
- •36. Послідовність проектування оптимальної сау.
- •45. Класифікація адаптивних і самонастроювальних систем.
- •46. Самонастроювальні сау з оптимізацією статичних режимів.
- •47. Самонастроювальні сау з оптимізацією динамічних режимів.
- •48. Методи пошуку екстремуму функції настроювальних параметрів.
- •49. Найпростіша що самоорганізується сау.
- •50. Поняття про системи, що самонавчаються, автоматичного керування.
50. Стійкість сау. Частотні критерії стійкості?
Критерий устойчивости Михайлова
Так как для
устойчивой САУ число правых корней m
= 0, то
угол поворота вектора D(j)
составит
=
n
/2.
То есть САУ
будет устойчива, если вектор D(j)
при изменении частоты
от
0 до +
повернется
на угол n
/2.
При
этом конец вектора опишет кривую,
называемую годографом
Михайлова.
Она начинается на положительной полуоси,
так как D(0)
= an,
и последовательно проходит против
часовой стрелки n квадрантов комплексной
плоскости, уход в бесконечность в n
- ом квадранте (рис.69а).
Если это правило нарушается (например, число проходимых кривой квадрантов не равно n, или нарушается последовательность прохождения квадрантов (рис.69б)), то такая САУ неустойчива - это и есть необходимое и достаточное условие критерия Михайлова.
Достоинства. Этот критерий удобен своей наглядностью. Так, если кривая проходит вблизи начала координат, то САУ находится вблизи границы устойчивости и наоборот. Этим критерием удобно пользоваться, если известно уравнение замкнутой САУ.
Для облегчения
построения годографа Михайлова выражение
для D(j)
представляют суммой вещественной и
мнимой составляющих:
D(j)
=
a0(j
- p1)(j
- p2)...(j
- pn)
= a0(j
)n
+ a1(j
)n
- 1
+ ... + an
= ReD(j
)
+ jImD(j
),
где
ReD(j)
= an
- an
- 2
2
+ an-
4
4
- ...,
ImD(j)
= an
- 1
- an
- 3
3
+ an-
5
5
- ....
Меняя
от
0
до
по
этим формулам находят координаты точек
годографа, которые соединяют плавной
линией.
Критерий устойчивости Найквиста
Этот
критерий позволяет судить об устойчивости
замкнутой САУ по виду АФЧХ разомкнутой
САУ (рис.70). Исследование разомкнутой
САУ проще, чем замкнутой. Его можно
производить экспериментально, поэтому
часто оказывается, что АФЧХ разомкнутой
САУ мы имеем или можем получить.
Передаточная функция разомкнутой САУ:
Wp(p)
= Wp(p)/Dp(p)
= > уравнение динамики: y(t)
=
e(t),
или
Dp(p)y(t)
= Kp(p)
e(t).
Здесь Dp(p) - характеристический полином разомкнутой САУ. То есть по виду корней уравнения Dp(p) = 0 можно судить об устойчивости разомкнутой САУ. Но это пока ничего не говорит об устойчивости замкнутой САУ.
Для того, чтобы получить уравнение динамики замкнутой САУ при свободном движении, считаем, что внешнее воздействие u = 0, тогда на вход первого звена САУ подается сигнал
e(t) = u(t) - y(t) = - y(t).
То есть
Dp(p)y(t)
= Kp(p)
(
- y(t)),
следовательно уравнение замкнутой САУ:
(Dp(p)
+ Kp(p))y(t)
= 0.
Таким образом, характеристическое уравнение замкнутой САУ:
Dз(p) = Dp(p) + Kp(p) = 0.
По виду его корней уже можно судить об устойчивости замкнутой САУ.
Воспользуемся вспомогательной функцией:
F(j)
= 1 + Wр(j
)
=
.
По сути дела
она представляет собой АФЧХ разомкнутой
САУ, сдвинутую на единицу вправо. Степени
полиномов Dз(j)
и Dp(j
)
равны
n.
Эти полиномы имеют свои корни pзi
и ppi,
то есть можно записать:
F(jw) =
.
Каждую разность
в скобках можно представить вектором
на комплексной плоскости, конец которого
скользит по мнимой оси
(рис.63в).
При изменении
от
-
до
+
каждый
из векторов j
- pi
будет
поворачиваться на угол +p,
если корень левый и -p,
если корень правый.
Пусть полином
Dз(jw) имеет
m
правых корней и n
- m левых,
а полином Dp(j)
имеет g
правых корней и n
- g левых.
Тогда суммарный угол поворота вектора
функции F(j
)
при изменении частоты
от
-
до
+
:
p[(n
- m) - m)] - p[(n - g) - g] = 2p(g - m).
Если замкнутая
САУ устойчива, то m
= 0, тогда
суммарный поворот вектора F(j)
при
изменении
от
-
до
+
должен
быть равен 2
g,
а при изменении
от
0
до +
он
составит 2
g/2.
Отсюда можно
сформулировать критерий
устойчивости Найквиста:
если разомкнутая САУ неустойчива и
имеет g
правых корней, то для того, чтобы замкнутая
САУ была устойчива необходимо и
достаточно, чтобы вектор F(j)
при изменении
от
0 до +
охватывал
начало координат в положительном
направлении g/2
раз, то есть АФЧХ разомкнутой САУ должна
охватвать g/2
раз точку (
- 1, j0).
На рис.71а приведены АФЧХ разомкнутых САУ, устойчивых в замкнутом состоянии, на рис.71б - замкнутая САУ неустойчива.
На рис.71в и 71г
показаны АФЧХ разомкнутых астатических
САУ, соответственно устойчивых и
неустойчивых в замкнутом состоянии. Их
особенность в том, что АФЧХ при
0
уходит в бесконечность.
В этом случае при использовании критерия Найквиста ее мысленно замыкают на вещественную ось по дуге окружности бесконечно большого радиуса.
Достоинство. Критерий Найквиста очень нагляден. Он позволяет не только выявить, устойчива ли САУ, но и, в случае, если она неустойчива, наметить меры по достижению устойчивости.