- •Содержание
- •1 Группа
- •1. Організація адресації ат286 в захищеному режимі.
- •2. Архітектура мп 80386.
- •3. Архітектура мп 80486.
- •4. Регістри стану й керування і486.
- •5. Архітектура та функціональні можливості Pentium.
- •6. Провести порівняльний аналіз архітектур мікропроцесорів фірми Intel.
- •7. Risc-процесори.
- •8. Архітектура сигнального мікропроцесора adsp.
- •9. Описати роботу системного таймера ibm-сумісного комп'ютера.
- •10. Класифікація мікропроцесорних наборів.
- •11. Класифікація мікропроцесорних наборів за числом віс.
- •12. Режими роботи таймерів однокристальної мікро еом Intel 8051.
- •13. Архітектура пам’яті процесорів adsp-2100.
- •14. Система команд і регістри процесорів сімейства adsp-2100.
- •15. Динамічні зп з довільною вибіркою.
- •16. Стекова адресація. Польський зворотній запис.
- •If (число)
- •17. Перетворення віртуальних адресів у фізичні.
- •18. Адресний простір еом. Способи адресації операндів.
- •19. Оперативна пам’ять. Організація та принципи управління.
- •20. Система переривань та її характеристики.
- •21. Формування фізичної адреси з логічної у реальному режимі.
- •22. Формування фізичної адреси з логічної у 386 захищеному режимі.
- •23. Підсистема керування оперативної пам’яті. Організація та принципи управління.
- •1. Динамическое распределение памяти.
- •2. Разделение памяти на страницы.
- •3. Использование связанных списков.
- •4. Сегментация памяти.
- •5. Свопинг памяти.
- •6. Организация виртуальной памяти.
- •24. Динамічний розподіл пам’яті. Організація віртуальної пам’яті.
- •25. Загальні принципи будування багатопроцесорних обчислювальних комплексів..
- •26. Загальні принципи будування багатомашинних обчислювальних комплексів.
- •27. Конвеєрні, векторні та матричні багатопроцесорні комплекси.
- •28. Асоціативні системи та системи зі структурою, що перебудовується.
- •29. Принципи будування високонадійних обчислювальних систем - кластерів.
- •30. Принципи побудови систем з симетрично-паралельною обробкою даних. Переваги та недоліки таких систем
- •31. Страницы jsp. Теги и встроенные объекты jsp
- •32. Архитектура распределенных приложений. Web – сервисы
- •33. Soap
- •34. Java rmi Достоинства и недостатки Java rmi
- •35. Распределенные компьютерные системы. Промежуточное программное обеспечение распределенных компьютерных систем
- •36. Виртуальная машина jvm
- •37. Пространства и схемы xml
- •38. Corba. Достоинтсва и недостатки corba
- •39. Сервлет-технология Java
- •40.Xml. Структура xml-документа
- •2 Группа
- •1 Класифікація операційних систем
- •2 Мультизадачність, її розновиди
- •3. Процеси, потоки та їх взаємодія
- •4. Стани процесів
- •5. Розподіл оперативної пам'яті фіксованими розділами
- •6. Розподіл оперативної пам'яті зміними розділами, алгоритми завантаження нових процесів
- •7. Пошук фізичної адреси у реальному режимі
- •8.Пошук фізичної адреси у захищеному режимі
- •9. Пошук фізичної адреси при сторінковій адресації
- •10.Сегментна та сторінкова організація віртуальної пам’яті, алгоритми заміщення сегментів
- •11. Системи введення-виведення, основні режими, базові таблиці
- •12.Файлові системи fat (fat-16, fat-32, vfat).
- •Vfat и длинные имена файлов
- •13.Файлова система hpfs.
- •14.Файлова система ntfs.
- •15.Файлова система UfS.
- •16. Структура жорсткого магнитного диску
- •1.Каждый жесткий диск обслуживают несколько головок, в зависимости от количества круглых пластинок, покрытых магнитным материалом, из которых состоит диск.
- •2.Информация записывается и читается блоками, поэтому все дорожки как бы разбиты на секторы (обычно по 512 байт).
- •3.В операциях чтения или записи на физическом уровне необходимо указывать номер головки (0,1,...), дорожки или цилиндра (0,1,...), сектора (1,2,...).
- •17 Класифікація системного програмного забезпечення
- •18 Мікроядерні та монолітні операційні системи, їх особливості
- •19 Сервісні системи (інтерфейсні системи, оболонки, утілити)
- •20 Інструментальні системи
- •21 Системи програмування, їх основні типи.
- •22 Системи штучного інтелекту
- •23 Асемблери, алгоритм двохпрохідного асемблера
- •24 Завантажувачі
- •25 Макропроцесори
- •26 Компілятори
- •27 Призначення та структура головної функції вікна.
- •Реєстрація класу вікна, параметри, які підлягають реєстрації.
- •29 Етапи створення вікна. Які функції задіяно на кожному етапі?
- •30 Ініціалізація dll-бібліотеки у середовищі Microsoft Windows nt/2000/xp.
- •31 Експорт та імпорт функцій при використанні dll-бібліотек.
- •32 Динамічний імпорт функцій при використанні dll-бібліотек.
- •33 Структура простої прикладної програми з бібліотекою динамічної компоновки. Послідовність дій при компіляції.
- •If(!strcmp((lpstr)lParam, szBuf)) // Сравниваем заголовок со строкой, адрес которой передан в функцию EnumWindowsProc
- •3 Группа
- •Void main ()
- •Void main ()
- •Void main ()
- •Int n; scanf("%d",&n); //число элементов в массиве
- •Void main()
- •Int n; scanf("%d",&n); //число элементов в массиве
- •Int main()
- •Int n,m; scanf("%d%d",&n,&m); //число элементов строк и элементов в строке
- •Int main()
- •Int n,m; scanf("%d%d",&n,&m); //число элементов строк и элементов в строке
- •Int main()
- •Int main()
- •Int main()
- •Int main()
- •Int mul(double X,double y)
- •Int main()
- •Int main()
- •Void func(a);
- •Int fclose(file *имя);
- •Void perror(const char *s);
- •Int fputc(int ch, file *fp);
- •Int fgetc(file *fp);
- •Int fputs(char* string, file *fp);
- •Int fprintf(file *fp, char *format [,аргумент]…);
- •Int fscanf(file *fp, char *format [,указатель]…);
- •Int n; float f; long l; int a[5]; float m[5];
- •Int fwrite(void *ptr, int size, int n, file *fp);
- •Int fread(void *ptr,int size,int n,file *fp);
- •16 Ооп. Визначення класу. Компоненти класу. Спеціфікатори доступу до компонентів класу. Різниця між методами класу, визначеними в класі та поза межами класу.
- •Void define(double re,double im)
- •Void display()
- •X.Define(1,2);
- •Void set(int);
- •Void myclass::set(int c)
- •Int myclass::get()
- •17 Ооп. Визначення класу. Конструктор, перевантажені конструктори, деструктор.
- •Void main()
- •Void main()
- •Void main()
- •18 Ооп. Поняття дружніх функціїй. Різниця між дружньою функцією - членом класу та не членом класу.
- •19 Ооп. Поняття перевантаження операцій. Правила її використання.
- •20 Ооп. Наслідування. Поняття базового та похідного класів. Спеціфікатори доступу до членів класів.
- •21 Моделювання. Визначення моделі та призначення моделювання. Види моделей.
- •22 Моделювання. Загальносистемна модель функціонування систем. Моделі систем: безперервна, лінійна, безперервна лінійна, дискретна.
- •23 Моделювання. Узагальнена модель систем масового обслуговування (смо). Типи смо
- •24 Моделювання. Позначений граф станів системи. Рівняння Колмогорова для ймовірностей стану системи. Фінальні ймовірності станів системи.
- •25 Асемблер. Регістри та біти ознак процесора Intel 8086. (регістри загального вжитку та сегментні регістри, їх призначення; ознаки cf, of, sf, pf, af, zf)
- •26 Асемблер. Структура програми (директиви сегментування segment та з використанням директиви model; директиви assume; моделі пам’яті; ініціалізація сегментних регістрів)
- •Int 21h ;вызов прерывания с номером 21h
- •28 Асемблер. Арифметичні операції додавання та віднімання чисел зі знаком та беззнакових, з урахуванням ознаки переносу, інкрементування й декрементування
- •Vich_1 dd 2 dup (0)
- •Vich_2 dd 2 dup (0)
- •Inc ax ;увеличить значение в ax на 1
- •29 Асемблер. Арифметичні операції множення та ділення чисел зі знаком та беззнакових
- •Imul eax,bx,8
- •Idiv (Integer diVide) Деление целочисленное со знаком
- •Idiv делитель
- •Idiv bx ;частное в ax, остаток в dx
- •30 Асемблер. Команди безумовної передачі керування. (прямі короткі; прямі; непрямі)
- •31 Асемблер. Організація циклів за допомогою команд jcxz; loop, loopz та loopnz
- •32 Асемблер. Команди умовного передавання керування. (операція cmp; операції умовного передавання керування jcxz, jc, jo, jz, jc, je, jl, jg, ja, jb)
- •Int 21h ;Вызов системной функции
- •33 Асемблер. Макроси (опис, розташування, використання)
- •4 Группа
- •1,2 Общая характеристика модели osi
- •3 Понятие «открытая система»
- •4 Стандартные стеки коммуникационных протоколов (osi , ipx/spx, NetBios/smb)
- •5 Стек tcp/ip
- •6 Общая структура телекоммуникационной сети
- •7 Корпоративные сети
- •8,9 Сети операторов связи
- •10 Классификация линий связи: первичные сети, линии и каналы связи; физ.Среда пердачи аднных
- •11 Классификация линий связи: аппаратура передачи данных
- •12 Структурированная кабельная система
- •13 Безпровідна лінія зв'язку, діапазони електромагнітного спектру
- •14 Безпровідне середовище передачі даних: розповсюдження електромагнітних хвиль, ліцензування
- •15 Общая характеристика протоколов локальных сетей: стандартная топология и разделяемая среда, стек протоклов локальных сетей.
- •16 Протокол mac. Адресация mac-уровня.
- •17 Структура стандартов ieee 802.X
- •18 Спецификация физической среды Ethernet ( общая характеристика стандартов 10Мбит/мек,Домен коллизий)
- •19 Спецификация физической среды Ethernet ( Стандарт 10Base-5, 10Base-5)
- •20 Спецификация физической среды Ethernet ( Стандарт 10Base-т)
- •21 Спецификация физической среды Ethernet ( Оптоволоконная сеть Ethernet)
- •22 Технология Fast Ethernet (Физический уровень технологии Fast Ethernet)
- •23 Технология Fast Ethernet (спецификация 100Base-fx/тх/т4)
- •24 Правила построения сегментов Fast Ethernet при наличии повторителей
- •25. Gigabit Ethernet
- •26. Технология Token Ring
- •27 Загальна характеристика безпровідних локальних мереж
- •28 Мережі Стек протоколів ieee 802.11, безпека безпровідних локальних мереж
- •29 Мережі Топології безпровідних локальних мереж стандарту 802.11, розподілений та централізований режими доступу до розділеного середовища
- •30 Мережі Особливості персональних мереж, архітектура Bluetooth
- •31 Мережі Стек протоколів Bluetooth, кадри Bluetooth.
- •32 Мережі Основні функції мережних адаптерів
- •33 Мережі Основні и додаткові функції концентраторів
- •34 Мережі Багатосегментні концентратори
- •35 Мережі Основні характеристики та особливості комутаторів. Неблокуючі комутатори
- •36 Мережі Функції комутаторів (боротьба з перевантаженнями трансляція протоколів канального рівня, фільтрація трафіку)
- •37 Мережі Характеристики продуктивності комутаторів
- •38 Мережі Поняття та призначення віртуальних мереж
- •39 Мережі Створення віртуальніх мереж на базі одного та декількох комутаторів
- •40 Мережі Якість обслуговування в віртуальних мережах
- •41 Мережі Типи адрес стеку tcp/ip (локальні адреси, мережні ip-адреси, доменні імена).
- •42 Мережі Протокол dhcp
- •43 Мережі Протоколи транспортного рівня tcp и udp (загальна характеристика, порти)
- •44 Мережі Протокол транспортного рівня udp
- •45 Мережі Протокол транспортного рівня tcp (формат tcp - сегмента, логічне з‘єднання, послідовний та затверджений номер)
- •47 Мережі Класифікація протоколів маршрутизації, маршрутизація без таблиць, адаптивна маршрутизація
- •48 Мережі Використання декількох протоколів маршрутизації, зовнішні та внутрішні шлюзні протоколи
- •49 Мережі Протокол bgp
- •50 Мережі Поняття, типи icmp-повідомлень
- •51 Мережі Протокол icmp (формат ехо – запитання /ехо - відповідь и утиліта ping; формат повідомлення про помилку та утиліта traceroute)
- •5 Группа
- •1 Трьохрівнева модель субд
- •2 Моделі даних
- •3 Реляційна модель даних
- •4 Ключі відношень. Визначення, різновиди, призначення. Умови цілісності даних
- •5 Інфологічне моделювання предметної області. Модель “Сутність – зв’язок”
- •6 Види зв’яку між сутностями. Навести приклади
- •7 Нормалізація відношень. Призначення. Послідовність виконання нормалізації.
- •8 Нормалізація відношень. 1 та 2 нормальні форми.
- •9 Нормалізація відношень. 3 нормальна форма та нормальна форма Бойса-Кодда. Навести приклади
- •10 Функціональні залежності атрибутів у відношеннях.
- •11 Реляційна алгебра. Основні операції реляційної алгебри.
- •12 Оператор Select. Речення From . Синтаксис. Використання. Навести приклади.
- •13 Відбирання рядків у запитах. Синтаксис. Навести приклад.
- •14 Відбирання груп у запитах. Синтаксис. Навести приклад.
- •15 Групування та сортування записів у запиті. Навести приклад
- •16 Вкладені запити. Різновиди. Синтаксис. Навести приклади.
- •17 Використання агрегатних функцій у запитах.
- •18 Фізична модель даних. Структура записів на носії.
- •21. Рівні та задачі проектування електронних пристроїв от.
- •22. Математичне моделювання електронних пристроїв от: переваги та недоліки.
- •23. Математичні моделі елементів електронних пристроїв. Визначення і класифікація, методи розробки.
- •24. Задачі схемотехнічного проектування електронних пристроїв от.
- •25. Структура та можливості програм моделювання електронних схем.
- •26. Типова структура і засоби розробки макромоделей інтегральних мікросхем.
- •27. Імітаційне моделювання електронних пристроїв от: процес, подія, активність.
- •28. Методи функціонального моделювання аналогових і цифрових пристроїв.
- •29. Методи логічного моделювання цифрових пристроїв.
- •30. Тестування цифрових пристроїв: контролюючі та діагностичні тести. Засоби їх отримання.
- •31 Моделювання на рівні регістрових передач
- •32 Функціональне моделювання за допомогою програм моделювання аналогових схем.
- •33 Математические методы и модели на разных уровнях проетирования
- •6 Группа
- •1 Властивості інформації. Класифікація загроз інформації.
- •2 Уровни защиты информации в компьютерных системах
- •3 Законодательний рівень захисту інформації
- •4. Організаційно-адміністративний рівень захисту інформації
- •5. Фізико-технічні засоби захисту інформації в компьютерних системах
- •6. Криптографічний захист інформації
- •7. Стандарти симетричного шифрування даних
- •8. Криптосистеми з відкритим ключем
- •9. Канали несанкціонованого доступу до інформації
- •10, Системи захисту від несанкціонованого доступу
- •11. Аутентифікація електронних даних: імітоприкладка, електронний цифровий підпис
- •3. Проверка подписи
- •1. Генерация ключей
- •2. Подписание документа
- •3. Проверка подписи
- •12. Системи ідентифікації та аутентифікації користувачів
- •13. Взаємна аутентифікація користувачів
- •1. «Запрос-ответ»
- •2. «Временной штемпель»
- •3. Процедура рукопожатия
- •4. Протокол аутентификации с нулевым разглашением знаний
- •14. Парольная система. Требования к паролям.
- •15. Захист від віддалених мережевих атак
- •27. Перетворення спектра при дискретизації сигналів. Теорема Котельникова
- •28. Швидке перетворення Фур'є з проріджуванням за часом. Структурна схема "метелика" з проріджуванням за часом.
- •29. Поняття цифрового фільтра. Рекурсивні та нерекурсивні фільтри. Чотири основні форми реалізації фільтрів.
- •30. Операції над зображеннями. Поняття околу (4-точечний, 8-точечний окіл). Вікно, опорна точка вікна.
- •31. Лінійна фільтрація зображень. Рівняння лінійної фільтрації
- •7 Группа
- •2 За допомогою методики розрахунка конфігурації мережі Ethernet, підтвердіть правило 4-х хабів.
- •8 Наведіть обмеження для мереж, що побудовані на основі комутаторів
- •11 Яку максимальну кількість підмереж можливо організувати для мережі класа с? Приведіть значення маски
- •20 Проаналізуйте можливості та характеристики сучасних принтерів
- •21 Проведіть логічне тестування і відновлення інформації на гнучкому магнітному диску
- •22 Структура та принцип роботи сучасного модема, блок-схема передавача та приймача
- •23 Реалізація функцій скремблювання та ехоподавлення в сучасних модемах
- •24 Сучасні жорсткі диски. Проаналізуйте їх характеристики
- •25 Сучасні сканери, Проаналізуйте їх функції та характеристики
- •26 Джерела безперервного живлення. Проаналізуйте їх основні характеристики
- •27 Дайте визначення та наведіть робочі формули основних показників надійності. Приведіть та роз'ясніть графік інтенсивності відмов для обчислювальних пристроїв.
- •28 Приведіть формулу ймовірності безвідмовної роботи Pc(t) системи з навантаженим загальним резервом. Приведіть графік залежності нароботки до відказу від кратності резерву.
- •17 Розробіть на мові асемблер програму для обчислення суми чисел масиву з 10 елементів типу байт у процедурі з передаванням аргументів через регістри.
- •18 Розробіть на мові асемблер фрагмент програми, в якій знаходиться максимальний елемент масиву з 10 чисел типу слово (з використанням команди jcxz).
- •19 Розробіть на мові асемблер фрагмент програми для обчислення номеру мінімального елементу в масиві з 10 чисел типу слово (за допомогою команди loop)
- •20 Розробіть на мові асемблер фрагмент програми, що порівнює значення двох змінних введених з клавіатури й відображає результат у вигляді: рівні або нерівні.
- •21 Розробіть на мові асемблер фрагмент програми, в якій додаються та множаться два байтові числа, визначається парний чи непарний результат суми та дво- чи чотирьохбайтовий результат добутку.
- •26 Приведіть методи підвищення ефективності роботи з жорстким диском по переміщенню голівок
- •31 Проаналізуйте структуру драйверу ms dos. Його частини. Завантаження драйверу та робота з ним.
- •33 Наведіть характеристики режимів відеосистеми. Характеристики, які не змінюються, які змінюються з використанням фізичних методів. Характеристики, які змінюються програмно.
- •34 Проаналізувати методи створення розділів диску. Скільки розділів та логічних дисків можливо встановити на одному фізичному диску?
25. Gigabit Ethernet
Средства обеспечения диаметра сети в 200 м на разделяемой среде
Для расширения максимального диаметра сети Gigabit Ethernet в полудуплексном режиме до 200 м разработчики технологии предприняли достаточно естественные меры, основывающиеся на известном соотношения времени передачи кадра минимальной длины и временем двойного оборота.
Минимальный размер кадра был увеличен (без учета преамбулы) с 64 до 512 байт или до 4096 bt. Соответственно, время двойного оборота теперь также можно было увеличить до 4095 bt, что делает допустимым диаметр сети около 200 м при использовании одного повторителя. При двойной задержке сигнала в 10 bt/m оптоволоконные кабели длиной 100 м вносят вклад во время двойного оборота по 1000 bt, и если повторитель и сетевые адаптеры будут вносить такие же задержки, как в технологии Fast Ethernet (соответствующие данные см. в предыдущем разделе), то задержка повторителя в 1000 bt и пары сетевых адаптеров в 1000 bt дадут в сумме время двойного оборота 4000 bt, что удовлетворяет условию распознавания коллизий. Для увеличения длины кадра до требуемой в новой технологии величины сетевой адаптер должен дополнить поле данных до длины 448 байт так называемым расширением (extention), представляющим собой поле, заполненное нулями.
Формально минимальный размер кадра не изменился, он по-прежнему равен 64 байтам или 512 битам, но это объясняется тем, что поле расширения помещается после поля контрольной суммы кадра FCS, его значение не включается в контрольную сумму и не учитывается значением поля Length/Type (в том случае, когда это поле переносит значения именно длины кадра). Поле Extention является просто расширением несущей, необходимым для корректного обнаружения коллизий.
Для сокращения накладных расходов при использовании слишком длинных кадров для передачи коротких квитанций разработчики стандарта разрешили конечным узлам передавать несколько кадров подряд, без передачи среды другим станциям. Такой режим получил название Burst Mode — монопольный пакетный режим. Станция может передать подряд несколько кадров с общей длиной не более 65 536 бит или 8192 байт. Если станции нужно передать несколько небольших кадров, то она может не дополнять первый кадр до размера в 512 байт за счет поля Extension, а передавать несколько кадров подряд до исчерпания предела в 8192 байт (в этот предел входят все байты кадра, в том числе преамбула, заголовок, данные и контрольная сумма). Предел 8192 байт называется BurstLength. Если станция начала передавать кадр и предел BurstLength был достигнут в середине кадра, то кадр разрешается передать до конца.
Увеличение «совмещенного» кадра до 8192 байт несколько задерживает доступ к разделяемой среде других станций, но при скорости 1000 Мбит/с эта задержка не столь существенна. В полнодуплексном режиме поля Extension и Burst Mode не используются, так как распознавать коллизии в этом режиме нет необходимости, такое понятие здесь просто отсутствует.
Спецификации физической среды стандарта 802.3z
В стандарте 802.3z определены следующие типы физической среды:
-
одномодовый волоконно-оптический кабель;
-
многомодовый волоконно-оптический кабель 62,5/125;
-
многомодовый волоконно-оптический кабель 50/125;
-
двойной коаксиал с волновым сопротивлением 75 Ом.
Многомодовый кабель
Для многомодового оптоволокна стандарт 802.3z определил спецификации l000Base-SX и 1000Base-LX.
В первом случае используется длина волны 850 нм (S означает Short Wavelength — короткая волна), а во втором — 1300 нм (L — от Long Wavelength, то есть длинная волна).
В табл. 8.5 приведены предельные значения длины сегментов волоконно-оптического кабеля разного типа для стандарта 1000Base-SX.
Таблица 8.5. Диапазоны значений длины сегментов кабеля стандарта 1000Base-SX

Одномодовый кабель
Для спецификации 1000Base-LX в качестве источника излучения всегда применяется полупроводниковый лазер-диод с длиной волны 1300 нм.
Спецификация 1000Base-LX может работать как с многомодовым, так и с одномодовым кабелем. Предельные значения сегментов для кабелей разного типа приведены в табл. 8.6.
Таблица 8.6. Диапазоны значений длины сегментов кабеля стандарта 1000Base-LX

Твинаксиальный кабель
В качестве среды передачи данных используется высококачественный твинаксиальный кабель (Twinax) с волновым сопротивлением 150 Ом (2 x 75 Ом). Данные посылаются одновременно по паре проводников, каждый из которых окружен экранирующей оплеткой. При этом получается режим полудуплексной передачи. Для обеспечения полнодуплексной передачи необходимы еще две пары коаксиальных проводников. Начал выпускаться специальный кабель, который содержит четыре коаксиальных проводника, — так называемый Quad-кабель. Он внешне напоминает кабель категории 5 и имеет близкие к нему внешний диаметр и гибкость. Максимальная длина твинаксиального сегмента составляет всего 25 м, поэтому это решение подходит для оборудования, расположенного в одной комнате.
Gigabit Ethernet на витой паре категории 5
Как известно, каждая пара кабеля категории 5 имеет гарантированную полосу пропускания до 100 МГц. Для передачи по такому кабелю данных со скоростью 1000 Мбит/с было решено организовать параллельную передачу одновременно по всем 4 парам кабеля (так же, как и в технологии l00VG-AnyLAN).
Это сразу уменьшило скорость передачи данных по каждой паре до 250 Мбит/с. Однако и для такой скорости необходимо было придумать метод кодирования, который имел бы спектр не выше 100 МГц. Кроме того, одновременное использование четырех пар на первый взгляд лишает сеть возможности распознавания коллизий.
На оба эти вопроса комитет 802.3ab нашел ответы.
Для кодирования данных был применен код РАМ5, использующий 5 уровней потенциала: -2, -1, 0, +1, +2. Поэтому за один такт по одной паре передается 2,322 бит информации. Следовательно, тактовую частоту вместо 250 МГц можно снизить до 125 МГц. При этом если использовать не все коды, а передавать 8 бит за такт (по 4 парам), то выдерживается требуемая скорость передачи в 1000 Мбит/с и еще остается запас неиспользуемых кодов, так как код РАМ5 содержит 54 = 625 комбинаций, а если передавать за один такт по всем четырем парам 8 бит данных, то для этого требуется всего 28 = 256 комбинаций. Оставшиеся комбинации приемник использует для контроля принимаемой информации и выделения правильных комбинаций на фоне шума. Код РАМ5 на тактовой частоте 125 МГц укладывается в полосу 100 МГц кабеля категории 5.
При полудуплексном режиме работы получение встречного потока данных считается коллизией, а для полнодуплексного режима работы — нормальной ситуацией.
Основная область применения протокола Gigabit Ethernet — магистрали локальных (LAN) и городских (MAN) сетей. Наиболее часто используемый режим — полнодуплексный, обеспечивающий максимальные пропускную способность и расстояние между узлами.
