
- •Содержание
- •1 Группа
- •1. Організація адресації ат286 в захищеному режимі.
- •2. Архітектура мп 80386.
- •3. Архітектура мп 80486.
- •4. Регістри стану й керування і486.
- •5. Архітектура та функціональні можливості Pentium.
- •6. Провести порівняльний аналіз архітектур мікропроцесорів фірми Intel.
- •7. Risc-процесори.
- •8. Архітектура сигнального мікропроцесора adsp.
- •9. Описати роботу системного таймера ibm-сумісного комп'ютера.
- •10. Класифікація мікропроцесорних наборів.
- •11. Класифікація мікропроцесорних наборів за числом віс.
- •12. Режими роботи таймерів однокристальної мікро еом Intel 8051.
- •13. Архітектура пам’яті процесорів adsp-2100.
- •14. Система команд і регістри процесорів сімейства adsp-2100.
- •15. Динамічні зп з довільною вибіркою.
- •16. Стекова адресація. Польський зворотній запис.
- •If (число)
- •17. Перетворення віртуальних адресів у фізичні.
- •18. Адресний простір еом. Способи адресації операндів.
- •19. Оперативна пам’ять. Організація та принципи управління.
- •20. Система переривань та її характеристики.
- •21. Формування фізичної адреси з логічної у реальному режимі.
- •22. Формування фізичної адреси з логічної у 386 захищеному режимі.
- •23. Підсистема керування оперативної пам’яті. Організація та принципи управління.
- •1. Динамическое распределение памяти.
- •2. Разделение памяти на страницы.
- •3. Использование связанных списков.
- •4. Сегментация памяти.
- •5. Свопинг памяти.
- •6. Организация виртуальной памяти.
- •24. Динамічний розподіл пам’яті. Організація віртуальної пам’яті.
- •25. Загальні принципи будування багатопроцесорних обчислювальних комплексів..
- •26. Загальні принципи будування багатомашинних обчислювальних комплексів.
- •27. Конвеєрні, векторні та матричні багатопроцесорні комплекси.
- •28. Асоціативні системи та системи зі структурою, що перебудовується.
- •29. Принципи будування високонадійних обчислювальних систем - кластерів.
- •30. Принципи побудови систем з симетрично-паралельною обробкою даних. Переваги та недоліки таких систем
- •31. Страницы jsp. Теги и встроенные объекты jsp
- •32. Архитектура распределенных приложений. Web – сервисы
- •33. Soap
- •34. Java rmi Достоинства и недостатки Java rmi
- •35. Распределенные компьютерные системы. Промежуточное программное обеспечение распределенных компьютерных систем
- •36. Виртуальная машина jvm
- •37. Пространства и схемы xml
- •38. Corba. Достоинтсва и недостатки corba
- •39. Сервлет-технология Java
- •40.Xml. Структура xml-документа
- •2 Группа
- •1 Класифікація операційних систем
- •2 Мультизадачність, її розновиди
- •3. Процеси, потоки та їх взаємодія
- •4. Стани процесів
- •5. Розподіл оперативної пам'яті фіксованими розділами
- •6. Розподіл оперативної пам'яті зміними розділами, алгоритми завантаження нових процесів
- •7. Пошук фізичної адреси у реальному режимі
- •8.Пошук фізичної адреси у захищеному режимі
- •9. Пошук фізичної адреси при сторінковій адресації
- •10.Сегментна та сторінкова організація віртуальної пам’яті, алгоритми заміщення сегментів
- •11. Системи введення-виведення, основні режими, базові таблиці
- •12.Файлові системи fat (fat-16, fat-32, vfat).
- •Vfat и длинные имена файлов
- •13.Файлова система hpfs.
- •14.Файлова система ntfs.
- •15.Файлова система UfS.
- •16. Структура жорсткого магнитного диску
- •1.Каждый жесткий диск обслуживают несколько головок, в зависимости от количества круглых пластинок, покрытых магнитным материалом, из которых состоит диск.
- •2.Информация записывается и читается блоками, поэтому все дорожки как бы разбиты на секторы (обычно по 512 байт).
- •3.В операциях чтения или записи на физическом уровне необходимо указывать номер головки (0,1,...), дорожки или цилиндра (0,1,...), сектора (1,2,...).
- •17 Класифікація системного програмного забезпечення
- •18 Мікроядерні та монолітні операційні системи, їх особливості
- •19 Сервісні системи (інтерфейсні системи, оболонки, утілити)
- •20 Інструментальні системи
- •21 Системи програмування, їх основні типи.
- •22 Системи штучного інтелекту
- •23 Асемблери, алгоритм двохпрохідного асемблера
- •24 Завантажувачі
- •25 Макропроцесори
- •26 Компілятори
- •27 Призначення та структура головної функції вікна.
- •Реєстрація класу вікна, параметри, які підлягають реєстрації.
- •29 Етапи створення вікна. Які функції задіяно на кожному етапі?
- •30 Ініціалізація dll-бібліотеки у середовищі Microsoft Windows nt/2000/xp.
- •31 Експорт та імпорт функцій при використанні dll-бібліотек.
- •32 Динамічний імпорт функцій при використанні dll-бібліотек.
- •33 Структура простої прикладної програми з бібліотекою динамічної компоновки. Послідовність дій при компіляції.
- •If(!strcmp((lpstr)lParam, szBuf)) // Сравниваем заголовок со строкой, адрес которой передан в функцию EnumWindowsProc
- •3 Группа
- •Void main ()
- •Void main ()
- •Void main ()
- •Int n; scanf("%d",&n); //число элементов в массиве
- •Void main()
- •Int n; scanf("%d",&n); //число элементов в массиве
- •Int main()
- •Int n,m; scanf("%d%d",&n,&m); //число элементов строк и элементов в строке
- •Int main()
- •Int n,m; scanf("%d%d",&n,&m); //число элементов строк и элементов в строке
- •Int main()
- •Int main()
- •Int main()
- •Int main()
- •Int mul(double X,double y)
- •Int main()
- •Int main()
- •Void func(a);
- •Int fclose(file *имя);
- •Void perror(const char *s);
- •Int fputc(int ch, file *fp);
- •Int fgetc(file *fp);
- •Int fputs(char* string, file *fp);
- •Int fprintf(file *fp, char *format [,аргумент]…);
- •Int fscanf(file *fp, char *format [,указатель]…);
- •Int n; float f; long l; int a[5]; float m[5];
- •Int fwrite(void *ptr, int size, int n, file *fp);
- •Int fread(void *ptr,int size,int n,file *fp);
- •16 Ооп. Визначення класу. Компоненти класу. Спеціфікатори доступу до компонентів класу. Різниця між методами класу, визначеними в класі та поза межами класу.
- •Void define(double re,double im)
- •Void display()
- •X.Define(1,2);
- •Void set(int);
- •Void myclass::set(int c)
- •Int myclass::get()
- •17 Ооп. Визначення класу. Конструктор, перевантажені конструктори, деструктор.
- •Void main()
- •Void main()
- •Void main()
- •18 Ооп. Поняття дружніх функціїй. Різниця між дружньою функцією - членом класу та не членом класу.
- •19 Ооп. Поняття перевантаження операцій. Правила її використання.
- •20 Ооп. Наслідування. Поняття базового та похідного класів. Спеціфікатори доступу до членів класів.
- •21 Моделювання. Визначення моделі та призначення моделювання. Види моделей.
- •22 Моделювання. Загальносистемна модель функціонування систем. Моделі систем: безперервна, лінійна, безперервна лінійна, дискретна.
- •23 Моделювання. Узагальнена модель систем масового обслуговування (смо). Типи смо
- •24 Моделювання. Позначений граф станів системи. Рівняння Колмогорова для ймовірностей стану системи. Фінальні ймовірності станів системи.
- •25 Асемблер. Регістри та біти ознак процесора Intel 8086. (регістри загального вжитку та сегментні регістри, їх призначення; ознаки cf, of, sf, pf, af, zf)
- •26 Асемблер. Структура програми (директиви сегментування segment та з використанням директиви model; директиви assume; моделі пам’яті; ініціалізація сегментних регістрів)
- •Int 21h ;вызов прерывания с номером 21h
- •28 Асемблер. Арифметичні операції додавання та віднімання чисел зі знаком та беззнакових, з урахуванням ознаки переносу, інкрементування й декрементування
- •Vich_1 dd 2 dup (0)
- •Vich_2 dd 2 dup (0)
- •Inc ax ;увеличить значение в ax на 1
- •29 Асемблер. Арифметичні операції множення та ділення чисел зі знаком та беззнакових
- •Imul eax,bx,8
- •Idiv (Integer diVide) Деление целочисленное со знаком
- •Idiv делитель
- •Idiv bx ;частное в ax, остаток в dx
- •30 Асемблер. Команди безумовної передачі керування. (прямі короткі; прямі; непрямі)
- •31 Асемблер. Організація циклів за допомогою команд jcxz; loop, loopz та loopnz
- •32 Асемблер. Команди умовного передавання керування. (операція cmp; операції умовного передавання керування jcxz, jc, jo, jz, jc, je, jl, jg, ja, jb)
- •Int 21h ;Вызов системной функции
- •33 Асемблер. Макроси (опис, розташування, використання)
- •4 Группа
- •1,2 Общая характеристика модели osi
- •3 Понятие «открытая система»
- •4 Стандартные стеки коммуникационных протоколов (osi , ipx/spx, NetBios/smb)
- •5 Стек tcp/ip
- •6 Общая структура телекоммуникационной сети
- •7 Корпоративные сети
- •8,9 Сети операторов связи
- •10 Классификация линий связи: первичные сети, линии и каналы связи; физ.Среда пердачи аднных
- •11 Классификация линий связи: аппаратура передачи данных
- •12 Структурированная кабельная система
- •13 Безпровідна лінія зв'язку, діапазони електромагнітного спектру
- •14 Безпровідне середовище передачі даних: розповсюдження електромагнітних хвиль, ліцензування
- •15 Общая характеристика протоколов локальных сетей: стандартная топология и разделяемая среда, стек протоклов локальных сетей.
- •16 Протокол mac. Адресация mac-уровня.
- •17 Структура стандартов ieee 802.X
- •18 Спецификация физической среды Ethernet ( общая характеристика стандартов 10Мбит/мек,Домен коллизий)
- •19 Спецификация физической среды Ethernet ( Стандарт 10Base-5, 10Base-5)
- •20 Спецификация физической среды Ethernet ( Стандарт 10Base-т)
- •21 Спецификация физической среды Ethernet ( Оптоволоконная сеть Ethernet)
- •22 Технология Fast Ethernet (Физический уровень технологии Fast Ethernet)
- •23 Технология Fast Ethernet (спецификация 100Base-fx/тх/т4)
- •24 Правила построения сегментов Fast Ethernet при наличии повторителей
- •25. Gigabit Ethernet
- •26. Технология Token Ring
- •27 Загальна характеристика безпровідних локальних мереж
- •28 Мережі Стек протоколів ieee 802.11, безпека безпровідних локальних мереж
- •29 Мережі Топології безпровідних локальних мереж стандарту 802.11, розподілений та централізований режими доступу до розділеного середовища
- •30 Мережі Особливості персональних мереж, архітектура Bluetooth
- •31 Мережі Стек протоколів Bluetooth, кадри Bluetooth.
- •32 Мережі Основні функції мережних адаптерів
- •33 Мережі Основні и додаткові функції концентраторів
- •34 Мережі Багатосегментні концентратори
- •35 Мережі Основні характеристики та особливості комутаторів. Неблокуючі комутатори
- •36 Мережі Функції комутаторів (боротьба з перевантаженнями трансляція протоколів канального рівня, фільтрація трафіку)
- •37 Мережі Характеристики продуктивності комутаторів
- •38 Мережі Поняття та призначення віртуальних мереж
- •39 Мережі Створення віртуальніх мереж на базі одного та декількох комутаторів
- •40 Мережі Якість обслуговування в віртуальних мережах
- •41 Мережі Типи адрес стеку tcp/ip (локальні адреси, мережні ip-адреси, доменні імена).
- •42 Мережі Протокол dhcp
- •43 Мережі Протоколи транспортного рівня tcp и udp (загальна характеристика, порти)
- •44 Мережі Протокол транспортного рівня udp
- •45 Мережі Протокол транспортного рівня tcp (формат tcp - сегмента, логічне з‘єднання, послідовний та затверджений номер)
- •47 Мережі Класифікація протоколів маршрутизації, маршрутизація без таблиць, адаптивна маршрутизація
- •48 Мережі Використання декількох протоколів маршрутизації, зовнішні та внутрішні шлюзні протоколи
- •49 Мережі Протокол bgp
- •50 Мережі Поняття, типи icmp-повідомлень
- •51 Мережі Протокол icmp (формат ехо – запитання /ехо - відповідь и утиліта ping; формат повідомлення про помилку та утиліта traceroute)
- •5 Группа
- •1 Трьохрівнева модель субд
- •2 Моделі даних
- •3 Реляційна модель даних
- •4 Ключі відношень. Визначення, різновиди, призначення. Умови цілісності даних
- •5 Інфологічне моделювання предметної області. Модель “Сутність – зв’язок”
- •6 Види зв’яку між сутностями. Навести приклади
- •7 Нормалізація відношень. Призначення. Послідовність виконання нормалізації.
- •8 Нормалізація відношень. 1 та 2 нормальні форми.
- •9 Нормалізація відношень. 3 нормальна форма та нормальна форма Бойса-Кодда. Навести приклади
- •10 Функціональні залежності атрибутів у відношеннях.
- •11 Реляційна алгебра. Основні операції реляційної алгебри.
- •12 Оператор Select. Речення From . Синтаксис. Використання. Навести приклади.
- •13 Відбирання рядків у запитах. Синтаксис. Навести приклад.
- •14 Відбирання груп у запитах. Синтаксис. Навести приклад.
- •15 Групування та сортування записів у запиті. Навести приклад
- •16 Вкладені запити. Різновиди. Синтаксис. Навести приклади.
- •17 Використання агрегатних функцій у запитах.
- •18 Фізична модель даних. Структура записів на носії.
- •21. Рівні та задачі проектування електронних пристроїв от.
- •22. Математичне моделювання електронних пристроїв от: переваги та недоліки.
- •23. Математичні моделі елементів електронних пристроїв. Визначення і класифікація, методи розробки.
- •24. Задачі схемотехнічного проектування електронних пристроїв от.
- •25. Структура та можливості програм моделювання електронних схем.
- •26. Типова структура і засоби розробки макромоделей інтегральних мікросхем.
- •27. Імітаційне моделювання електронних пристроїв от: процес, подія, активність.
- •28. Методи функціонального моделювання аналогових і цифрових пристроїв.
- •29. Методи логічного моделювання цифрових пристроїв.
- •30. Тестування цифрових пристроїв: контролюючі та діагностичні тести. Засоби їх отримання.
- •31 Моделювання на рівні регістрових передач
- •32 Функціональне моделювання за допомогою програм моделювання аналогових схем.
- •33 Математические методы и модели на разных уровнях проетирования
- •6 Группа
- •1 Властивості інформації. Класифікація загроз інформації.
- •2 Уровни защиты информации в компьютерных системах
- •3 Законодательний рівень захисту інформації
- •4. Організаційно-адміністративний рівень захисту інформації
- •5. Фізико-технічні засоби захисту інформації в компьютерних системах
- •6. Криптографічний захист інформації
- •7. Стандарти симетричного шифрування даних
- •8. Криптосистеми з відкритим ключем
- •9. Канали несанкціонованого доступу до інформації
- •10, Системи захисту від несанкціонованого доступу
- •11. Аутентифікація електронних даних: імітоприкладка, електронний цифровий підпис
- •3. Проверка подписи
- •1. Генерация ключей
- •2. Подписание документа
- •3. Проверка подписи
- •12. Системи ідентифікації та аутентифікації користувачів
- •13. Взаємна аутентифікація користувачів
- •1. «Запрос-ответ»
- •2. «Временной штемпель»
- •3. Процедура рукопожатия
- •4. Протокол аутентификации с нулевым разглашением знаний
- •14. Парольная система. Требования к паролям.
- •15. Захист від віддалених мережевих атак
- •27. Перетворення спектра при дискретизації сигналів. Теорема Котельникова
- •28. Швидке перетворення Фур'є з проріджуванням за часом. Структурна схема "метелика" з проріджуванням за часом.
- •29. Поняття цифрового фільтра. Рекурсивні та нерекурсивні фільтри. Чотири основні форми реалізації фільтрів.
- •30. Операції над зображеннями. Поняття околу (4-точечний, 8-точечний окіл). Вікно, опорна точка вікна.
- •31. Лінійна фільтрація зображень. Рівняння лінійної фільтрації
- •7 Группа
- •2 За допомогою методики розрахунка конфігурації мережі Ethernet, підтвердіть правило 4-х хабів.
- •8 Наведіть обмеження для мереж, що побудовані на основі комутаторів
- •11 Яку максимальну кількість підмереж можливо організувати для мережі класа с? Приведіть значення маски
- •20 Проаналізуйте можливості та характеристики сучасних принтерів
- •21 Проведіть логічне тестування і відновлення інформації на гнучкому магнітному диску
- •22 Структура та принцип роботи сучасного модема, блок-схема передавача та приймача
- •23 Реалізація функцій скремблювання та ехоподавлення в сучасних модемах
- •24 Сучасні жорсткі диски. Проаналізуйте їх характеристики
- •25 Сучасні сканери, Проаналізуйте їх функції та характеристики
- •26 Джерела безперервного живлення. Проаналізуйте їх основні характеристики
- •27 Дайте визначення та наведіть робочі формули основних показників надійності. Приведіть та роз'ясніть графік інтенсивності відмов для обчислювальних пристроїв.
- •28 Приведіть формулу ймовірності безвідмовної роботи Pc(t) системи з навантаженим загальним резервом. Приведіть графік залежності нароботки до відказу від кратності резерву.
- •17 Розробіть на мові асемблер програму для обчислення суми чисел масиву з 10 елементів типу байт у процедурі з передаванням аргументів через регістри.
- •18 Розробіть на мові асемблер фрагмент програми, в якій знаходиться максимальний елемент масиву з 10 чисел типу слово (з використанням команди jcxz).
- •19 Розробіть на мові асемблер фрагмент програми для обчислення номеру мінімального елементу в масиві з 10 чисел типу слово (за допомогою команди loop)
- •20 Розробіть на мові асемблер фрагмент програми, що порівнює значення двох змінних введених з клавіатури й відображає результат у вигляді: рівні або нерівні.
- •21 Розробіть на мові асемблер фрагмент програми, в якій додаються та множаться два байтові числа, визначається парний чи непарний результат суми та дво- чи чотирьохбайтовий результат добутку.
- •26 Приведіть методи підвищення ефективності роботи з жорстким диском по переміщенню голівок
- •31 Проаналізуйте структуру драйверу ms dos. Його частини. Завантаження драйверу та робота з ним.
- •33 Наведіть характеристики режимів відеосистеми. Характеристики, які не змінюються, які змінюються з використанням фізичних методів. Характеристики, які змінюються програмно.
- •34 Проаналізувати методи створення розділів диску. Скільки розділів та логічних дисків можливо встановити на одному фізичному диску?
15.Файлова система UfS.
Каждый каталог и файл файловой системы имеет уникальное полное имя (в ОС UNIX это имя принято называть full pathname - имя, задающее полный путь, поскольку оно действительно задает полный путь от корня файловой системы через цепочку каталогов к соответствующему каталогу или файлу; мы будем использовать термин "полное имя", поскольку для pathname отсутствует благозвучный русский аналог). Каталог, являющийся корнем файловой системы (корневой каталог), в любой файловой системе имеет предопределенное имя "/" (слэш). Полное имя файла, например, /bin/sh означает, что в корневом каталоге должно содержаться имя каталога bin, а в каталоге bin должно содержаться имя файла sh. Коротким или относительным именем файла (relative pathname) называется имя (возможно, составное), задающее путь к файлу от текущего рабочего каталога (существует команда и соответствующий системный вызов, позволяющие установить текущий рабочий каталог).
В каждом каталоге содержатся два специальных имени, имя ".", именующее сам этот каталог, и имя "..", именующее "родительский" каталог данного каталога, т.е. каталог, непосредственно предшествующий данному в иерархии каталогов.
Рис. 2.1. Структура каталогов файловой системы
UNIX поддерживает многочисленные утилиты, позволяющие работать с файловой системой и доступные как команды командного интерпретатора. Вот некоторые из них (наиболее употребительные):
cp имя1 имя2 |
- копирование файла имя1 в файл имя2 |
rm имя1 |
- уничтожение файла имя1 |
mv имя1 имя2 |
- переименование файла имя1 в файл имя2 |
mkdir имя |
- создание нового каталога имя |
rmdir имя |
- уничтожение каталога имя |
ls имя |
- выдача содержимого каталога имя |
cat имя |
- выдача на экран содержимого файла имя |
chown имя режим |
- изменение режима доступа к файлу |
Структура файловой системы
Файловая система обычно размещается на дисках или других устройствах внешней памяти, имеющих блочную структуру. Кроме блоков, сохраняющих каталоги и файлы, во внешней памяти поддерживается еще несколько служебных областей.
В мире UNIX существует несколько разных видов файловых систем со своей структурой внешней памяти. Наиболее известны традиционная файловая система UNIX System V (s5) и файловая система семейства UNIX BSD (ufs). Файловая система s5 состоит из четырех секций (рисунок 2.2,a). В файловой системе ufs на логическом диске (разделе реального диска) находится последовательность секций файловой системы (рисунок 2.2,b).
Рис. 2.2. Структура внешней памяти файловых систем s5 и ufs
Кратко опишем суть и назначение каждой области диска.
-
Boot-блок содержит программу раскрутки, которая служит для первоначального запуска ОС UNIX. В файловых системах s5 реально используется boot-блок только корневой файловой системы. В дополнительных файловых системах эта область присутствует, но не используется.
-
Суперблок - это наиболее ответственная область файловой системы, содержащая информацию, которая необходима для работы с файловой системой в целом. Суперблок содержит список свободных блоков и свободные i-узлы (information nodes - информационные узлы). В файловых системах ufs для повышения устойчивости поддерживается несколько копий суперблока (как видно из рисунка 2.2,b, по одной копии на группу цилиндров). Каждая копия суперблока имеет размер 8196 байт, и только одна копия суперблока используется при монтировании файловой системы (см. ниже). Однако, если при монтировании устанавливается, что первичная копия суперблока повреждена или не удовлетворяет критериям целостности информации, используется резервная копия.
-
Блок группы цилиндров содержит число i-узлов, специфицированных в списке i-узлов для данной группы цилиндров, и число блоков данных, которые связаны с этими i-узлами. Размер блока группы цилиндров зависит от размера файловой системы. Для повышения эффективности файловая система ufs старается размещать i-узлы и блоки данных в одной и той же группе цилиндров.
-
Список i-узлов (ilist) содержит список i-узлов, соответствующих файлам данной файловой системы. Максимальное число файлов, которые могут быть созданы в файловой системе, определяется числом доступных i-узлов. В i-узле хранится информация, описывающая файл: режимы доступа к файлу, время создания и последней модификации, идентификатор пользователя и идентификатор группы создателя файла, описание блочной структуры файла и т.д.
-
Блоки данных - в этой части файловой системы хранятся реальные данные файлов. В случае файловой системы ufs все блоки данных одного файла пытаются разместить в одной группе цилиндров. Размер блока данных определяется при форматировании файловой системы командой mkfs и может быть установлен в 512, 1024, 2048, 4096 или 8192 байтов.
Монтируемые файловые системы
Файлы любой файловой системы становятся доступными только после "монтирования" этой файловой системы. Файлы "не смонтированной" файловой системы не являются видимыми операционной системой.
Для монтирования файловой системы используется системный вызов mount. Монтирование файловой системы означает следующее. В имеющемся к моменту монтирования дереве каталогов и файлов должен иметься листовой узел - пустой каталог (в терминологии UNIX такой каталог, используемый для монтирования файловой системы, называется directory mount point - точка монтирования). В любой файловой системе имеется корневой каталог. Во время выполнения системного вызова mount корневой каталог монтируемой файловой системы совмещается с каталогом - точкой монтирования, в результате чего образуется новая иерархия с полными именами каталогов и файлов.
Смонтированная файловая система впоследствии может быть отсоединена от общей иерархии с использованием системного вызова umount. Для успешного выполнения этого системного вызова требуется, чтобы отсоединяемая файловая система к этому моменту не находилась в использовании (т.е. ни один файл из этой файловой системы не был открыт). Корневая файловая система всегда является смонтированной, и к ней не применим системный вызов umount.
Как мы отмечали выше, отдельная файловая система обычно располагается на логическом диске, т.е. на разделе физического диска. Для инициализации файловой системы не поддерживаются какие-либо специальные системные вызовы. Новая файловая система образуется на отформатированном диске с использованием утилиты (команды) mkfs. Вновь созданная файловая система инициализируется в состояние, соответствующее наличию всего лишь одного пустого корневого каталога. Команда mkfs выполняет инициализацию путем прямой записи соответствующих данных на диск.