- •Содержание
- •1 Группа
- •1. Організація адресації ат286 в захищеному режимі.
- •2. Архітектура мп 80386.
- •3. Архітектура мп 80486.
- •4. Регістри стану й керування і486.
- •5. Архітектура та функціональні можливості Pentium.
- •6. Провести порівняльний аналіз архітектур мікропроцесорів фірми Intel.
- •7. Risc-процесори.
- •8. Архітектура сигнального мікропроцесора adsp.
- •9. Описати роботу системного таймера ibm-сумісного комп'ютера.
- •10. Класифікація мікропроцесорних наборів.
- •11. Класифікація мікропроцесорних наборів за числом віс.
- •12. Режими роботи таймерів однокристальної мікро еом Intel 8051.
- •13. Архітектура пам’яті процесорів adsp-2100.
- •14. Система команд і регістри процесорів сімейства adsp-2100.
- •15. Динамічні зп з довільною вибіркою.
- •16. Стекова адресація. Польський зворотній запис.
- •If (число)
- •17. Перетворення віртуальних адресів у фізичні.
- •18. Адресний простір еом. Способи адресації операндів.
- •19. Оперативна пам’ять. Організація та принципи управління.
- •20. Система переривань та її характеристики.
- •21. Формування фізичної адреси з логічної у реальному режимі.
- •22. Формування фізичної адреси з логічної у 386 захищеному режимі.
- •23. Підсистема керування оперативної пам’яті. Організація та принципи управління.
- •1. Динамическое распределение памяти.
- •2. Разделение памяти на страницы.
- •3. Использование связанных списков.
- •4. Сегментация памяти.
- •5. Свопинг памяти.
- •6. Организация виртуальной памяти.
- •24. Динамічний розподіл пам’яті. Організація віртуальної пам’яті.
- •25. Загальні принципи будування багатопроцесорних обчислювальних комплексів..
- •26. Загальні принципи будування багатомашинних обчислювальних комплексів.
- •27. Конвеєрні, векторні та матричні багатопроцесорні комплекси.
- •28. Асоціативні системи та системи зі структурою, що перебудовується.
- •29. Принципи будування високонадійних обчислювальних систем - кластерів.
- •30. Принципи побудови систем з симетрично-паралельною обробкою даних. Переваги та недоліки таких систем
- •31. Страницы jsp. Теги и встроенные объекты jsp
- •32. Архитектура распределенных приложений. Web – сервисы
- •33. Soap
- •34. Java rmi Достоинства и недостатки Java rmi
- •35. Распределенные компьютерные системы. Промежуточное программное обеспечение распределенных компьютерных систем
- •36. Виртуальная машина jvm
- •37. Пространства и схемы xml
- •38. Corba. Достоинтсва и недостатки corba
- •39. Сервлет-технология Java
- •40.Xml. Структура xml-документа
- •2 Группа
- •1 Класифікація операційних систем
- •2 Мультизадачність, її розновиди
- •3. Процеси, потоки та їх взаємодія
- •4. Стани процесів
- •5. Розподіл оперативної пам'яті фіксованими розділами
- •6. Розподіл оперативної пам'яті зміними розділами, алгоритми завантаження нових процесів
- •7. Пошук фізичної адреси у реальному режимі
- •8.Пошук фізичної адреси у захищеному режимі
- •9. Пошук фізичної адреси при сторінковій адресації
- •10.Сегментна та сторінкова організація віртуальної пам’яті, алгоритми заміщення сегментів
- •11. Системи введення-виведення, основні режими, базові таблиці
- •12.Файлові системи fat (fat-16, fat-32, vfat).
- •Vfat и длинные имена файлов
- •13.Файлова система hpfs.
- •14.Файлова система ntfs.
- •15.Файлова система UfS.
- •16. Структура жорсткого магнитного диску
- •1.Каждый жесткий диск обслуживают несколько головок, в зависимости от количества круглых пластинок, покрытых магнитным материалом, из которых состоит диск.
- •2.Информация записывается и читается блоками, поэтому все дорожки как бы разбиты на секторы (обычно по 512 байт).
- •3.В операциях чтения или записи на физическом уровне необходимо указывать номер головки (0,1,...), дорожки или цилиндра (0,1,...), сектора (1,2,...).
- •17 Класифікація системного програмного забезпечення
- •18 Мікроядерні та монолітні операційні системи, їх особливості
- •19 Сервісні системи (інтерфейсні системи, оболонки, утілити)
- •20 Інструментальні системи
- •21 Системи програмування, їх основні типи.
- •22 Системи штучного інтелекту
- •23 Асемблери, алгоритм двохпрохідного асемблера
- •24 Завантажувачі
- •25 Макропроцесори
- •26 Компілятори
- •27 Призначення та структура головної функції вікна.
- •Реєстрація класу вікна, параметри, які підлягають реєстрації.
- •29 Етапи створення вікна. Які функції задіяно на кожному етапі?
- •30 Ініціалізація dll-бібліотеки у середовищі Microsoft Windows nt/2000/xp.
- •31 Експорт та імпорт функцій при використанні dll-бібліотек.
- •32 Динамічний імпорт функцій при використанні dll-бібліотек.
- •33 Структура простої прикладної програми з бібліотекою динамічної компоновки. Послідовність дій при компіляції.
- •If(!strcmp((lpstr)lParam, szBuf)) // Сравниваем заголовок со строкой, адрес которой передан в функцию EnumWindowsProc
- •3 Группа
- •Void main ()
- •Void main ()
- •Void main ()
- •Int n; scanf("%d",&n); //число элементов в массиве
- •Void main()
- •Int n; scanf("%d",&n); //число элементов в массиве
- •Int main()
- •Int n,m; scanf("%d%d",&n,&m); //число элементов строк и элементов в строке
- •Int main()
- •Int n,m; scanf("%d%d",&n,&m); //число элементов строк и элементов в строке
- •Int main()
- •Int main()
- •Int main()
- •Int main()
- •Int mul(double X,double y)
- •Int main()
- •Int main()
- •Void func(a);
- •Int fclose(file *имя);
- •Void perror(const char *s);
- •Int fputc(int ch, file *fp);
- •Int fgetc(file *fp);
- •Int fputs(char* string, file *fp);
- •Int fprintf(file *fp, char *format [,аргумент]…);
- •Int fscanf(file *fp, char *format [,указатель]…);
- •Int n; float f; long l; int a[5]; float m[5];
- •Int fwrite(void *ptr, int size, int n, file *fp);
- •Int fread(void *ptr,int size,int n,file *fp);
- •16 Ооп. Визначення класу. Компоненти класу. Спеціфікатори доступу до компонентів класу. Різниця між методами класу, визначеними в класі та поза межами класу.
- •Void define(double re,double im)
- •Void display()
- •X.Define(1,2);
- •Void set(int);
- •Void myclass::set(int c)
- •Int myclass::get()
- •17 Ооп. Визначення класу. Конструктор, перевантажені конструктори, деструктор.
- •Void main()
- •Void main()
- •Void main()
- •18 Ооп. Поняття дружніх функціїй. Різниця між дружньою функцією - членом класу та не членом класу.
- •19 Ооп. Поняття перевантаження операцій. Правила її використання.
- •20 Ооп. Наслідування. Поняття базового та похідного класів. Спеціфікатори доступу до членів класів.
- •21 Моделювання. Визначення моделі та призначення моделювання. Види моделей.
- •22 Моделювання. Загальносистемна модель функціонування систем. Моделі систем: безперервна, лінійна, безперервна лінійна, дискретна.
- •23 Моделювання. Узагальнена модель систем масового обслуговування (смо). Типи смо
- •24 Моделювання. Позначений граф станів системи. Рівняння Колмогорова для ймовірностей стану системи. Фінальні ймовірності станів системи.
- •25 Асемблер. Регістри та біти ознак процесора Intel 8086. (регістри загального вжитку та сегментні регістри, їх призначення; ознаки cf, of, sf, pf, af, zf)
- •26 Асемблер. Структура програми (директиви сегментування segment та з використанням директиви model; директиви assume; моделі пам’яті; ініціалізація сегментних регістрів)
- •Int 21h ;вызов прерывания с номером 21h
- •28 Асемблер. Арифметичні операції додавання та віднімання чисел зі знаком та беззнакових, з урахуванням ознаки переносу, інкрементування й декрементування
- •Vich_1 dd 2 dup (0)
- •Vich_2 dd 2 dup (0)
- •Inc ax ;увеличить значение в ax на 1
- •29 Асемблер. Арифметичні операції множення та ділення чисел зі знаком та беззнакових
- •Imul eax,bx,8
- •Idiv (Integer diVide) Деление целочисленное со знаком
- •Idiv делитель
- •Idiv bx ;частное в ax, остаток в dx
- •30 Асемблер. Команди безумовної передачі керування. (прямі короткі; прямі; непрямі)
- •31 Асемблер. Організація циклів за допомогою команд jcxz; loop, loopz та loopnz
- •32 Асемблер. Команди умовного передавання керування. (операція cmp; операції умовного передавання керування jcxz, jc, jo, jz, jc, je, jl, jg, ja, jb)
- •Int 21h ;Вызов системной функции
- •33 Асемблер. Макроси (опис, розташування, використання)
- •4 Группа
- •1,2 Общая характеристика модели osi
- •3 Понятие «открытая система»
- •4 Стандартные стеки коммуникационных протоколов (osi , ipx/spx, NetBios/smb)
- •5 Стек tcp/ip
- •6 Общая структура телекоммуникационной сети
- •7 Корпоративные сети
- •8,9 Сети операторов связи
- •10 Классификация линий связи: первичные сети, линии и каналы связи; физ.Среда пердачи аднных
- •11 Классификация линий связи: аппаратура передачи данных
- •12 Структурированная кабельная система
- •13 Безпровідна лінія зв'язку, діапазони електромагнітного спектру
- •14 Безпровідне середовище передачі даних: розповсюдження електромагнітних хвиль, ліцензування
- •15 Общая характеристика протоколов локальных сетей: стандартная топология и разделяемая среда, стек протоклов локальных сетей.
- •16 Протокол mac. Адресация mac-уровня.
- •17 Структура стандартов ieee 802.X
- •18 Спецификация физической среды Ethernet ( общая характеристика стандартов 10Мбит/мек,Домен коллизий)
- •19 Спецификация физической среды Ethernet ( Стандарт 10Base-5, 10Base-5)
- •20 Спецификация физической среды Ethernet ( Стандарт 10Base-т)
- •21 Спецификация физической среды Ethernet ( Оптоволоконная сеть Ethernet)
- •22 Технология Fast Ethernet (Физический уровень технологии Fast Ethernet)
- •23 Технология Fast Ethernet (спецификация 100Base-fx/тх/т4)
- •24 Правила построения сегментов Fast Ethernet при наличии повторителей
- •25. Gigabit Ethernet
- •26. Технология Token Ring
- •27 Загальна характеристика безпровідних локальних мереж
- •28 Мережі Стек протоколів ieee 802.11, безпека безпровідних локальних мереж
- •29 Мережі Топології безпровідних локальних мереж стандарту 802.11, розподілений та централізований режими доступу до розділеного середовища
- •30 Мережі Особливості персональних мереж, архітектура Bluetooth
- •31 Мережі Стек протоколів Bluetooth, кадри Bluetooth.
- •32 Мережі Основні функції мережних адаптерів
- •33 Мережі Основні и додаткові функції концентраторів
- •34 Мережі Багатосегментні концентратори
- •35 Мережі Основні характеристики та особливості комутаторів. Неблокуючі комутатори
- •36 Мережі Функції комутаторів (боротьба з перевантаженнями трансляція протоколів канального рівня, фільтрація трафіку)
- •37 Мережі Характеристики продуктивності комутаторів
- •38 Мережі Поняття та призначення віртуальних мереж
- •39 Мережі Створення віртуальніх мереж на базі одного та декількох комутаторів
- •40 Мережі Якість обслуговування в віртуальних мережах
- •41 Мережі Типи адрес стеку tcp/ip (локальні адреси, мережні ip-адреси, доменні імена).
- •42 Мережі Протокол dhcp
- •43 Мережі Протоколи транспортного рівня tcp и udp (загальна характеристика, порти)
- •44 Мережі Протокол транспортного рівня udp
- •45 Мережі Протокол транспортного рівня tcp (формат tcp - сегмента, логічне з‘єднання, послідовний та затверджений номер)
- •47 Мережі Класифікація протоколів маршрутизації, маршрутизація без таблиць, адаптивна маршрутизація
- •48 Мережі Використання декількох протоколів маршрутизації, зовнішні та внутрішні шлюзні протоколи
- •49 Мережі Протокол bgp
- •50 Мережі Поняття, типи icmp-повідомлень
- •51 Мережі Протокол icmp (формат ехо – запитання /ехо - відповідь и утиліта ping; формат повідомлення про помилку та утиліта traceroute)
- •5 Группа
- •1 Трьохрівнева модель субд
- •2 Моделі даних
- •3 Реляційна модель даних
- •4 Ключі відношень. Визначення, різновиди, призначення. Умови цілісності даних
- •5 Інфологічне моделювання предметної області. Модель “Сутність – зв’язок”
- •6 Види зв’яку між сутностями. Навести приклади
- •7 Нормалізація відношень. Призначення. Послідовність виконання нормалізації.
- •8 Нормалізація відношень. 1 та 2 нормальні форми.
- •9 Нормалізація відношень. 3 нормальна форма та нормальна форма Бойса-Кодда. Навести приклади
- •10 Функціональні залежності атрибутів у відношеннях.
- •11 Реляційна алгебра. Основні операції реляційної алгебри.
- •12 Оператор Select. Речення From . Синтаксис. Використання. Навести приклади.
- •13 Відбирання рядків у запитах. Синтаксис. Навести приклад.
- •14 Відбирання груп у запитах. Синтаксис. Навести приклад.
- •15 Групування та сортування записів у запиті. Навести приклад
- •16 Вкладені запити. Різновиди. Синтаксис. Навести приклади.
- •17 Використання агрегатних функцій у запитах.
- •18 Фізична модель даних. Структура записів на носії.
- •21. Рівні та задачі проектування електронних пристроїв от.
- •22. Математичне моделювання електронних пристроїв от: переваги та недоліки.
- •23. Математичні моделі елементів електронних пристроїв. Визначення і класифікація, методи розробки.
- •24. Задачі схемотехнічного проектування електронних пристроїв от.
- •25. Структура та можливості програм моделювання електронних схем.
- •26. Типова структура і засоби розробки макромоделей інтегральних мікросхем.
- •27. Імітаційне моделювання електронних пристроїв от: процес, подія, активність.
- •28. Методи функціонального моделювання аналогових і цифрових пристроїв.
- •29. Методи логічного моделювання цифрових пристроїв.
- •30. Тестування цифрових пристроїв: контролюючі та діагностичні тести. Засоби їх отримання.
- •31 Моделювання на рівні регістрових передач
- •32 Функціональне моделювання за допомогою програм моделювання аналогових схем.
- •33 Математические методы и модели на разных уровнях проетирования
- •6 Группа
- •1 Властивості інформації. Класифікація загроз інформації.
- •2 Уровни защиты информации в компьютерных системах
- •3 Законодательний рівень захисту інформації
- •4. Організаційно-адміністративний рівень захисту інформації
- •5. Фізико-технічні засоби захисту інформації в компьютерних системах
- •6. Криптографічний захист інформації
- •7. Стандарти симетричного шифрування даних
- •8. Криптосистеми з відкритим ключем
- •9. Канали несанкціонованого доступу до інформації
- •10, Системи захисту від несанкціонованого доступу
- •11. Аутентифікація електронних даних: імітоприкладка, електронний цифровий підпис
- •3. Проверка подписи
- •1. Генерация ключей
- •2. Подписание документа
- •3. Проверка подписи
- •12. Системи ідентифікації та аутентифікації користувачів
- •13. Взаємна аутентифікація користувачів
- •1. «Запрос-ответ»
- •2. «Временной штемпель»
- •3. Процедура рукопожатия
- •4. Протокол аутентификации с нулевым разглашением знаний
- •14. Парольная система. Требования к паролям.
- •15. Захист від віддалених мережевих атак
- •27. Перетворення спектра при дискретизації сигналів. Теорема Котельникова
- •28. Швидке перетворення Фур'є з проріджуванням за часом. Структурна схема "метелика" з проріджуванням за часом.
- •29. Поняття цифрового фільтра. Рекурсивні та нерекурсивні фільтри. Чотири основні форми реалізації фільтрів.
- •30. Операції над зображеннями. Поняття околу (4-точечний, 8-точечний окіл). Вікно, опорна точка вікна.
- •31. Лінійна фільтрація зображень. Рівняння лінійної фільтрації
- •7 Группа
- •2 За допомогою методики розрахунка конфігурації мережі Ethernet, підтвердіть правило 4-х хабів.
- •8 Наведіть обмеження для мереж, що побудовані на основі комутаторів
- •11 Яку максимальну кількість підмереж можливо організувати для мережі класа с? Приведіть значення маски
- •20 Проаналізуйте можливості та характеристики сучасних принтерів
- •21 Проведіть логічне тестування і відновлення інформації на гнучкому магнітному диску
- •22 Структура та принцип роботи сучасного модема, блок-схема передавача та приймача
- •23 Реалізація функцій скремблювання та ехоподавлення в сучасних модемах
- •24 Сучасні жорсткі диски. Проаналізуйте їх характеристики
- •25 Сучасні сканери, Проаналізуйте їх функції та характеристики
- •26 Джерела безперервного живлення. Проаналізуйте їх основні характеристики
- •27 Дайте визначення та наведіть робочі формули основних показників надійності. Приведіть та роз'ясніть графік інтенсивності відмов для обчислювальних пристроїв.
- •28 Приведіть формулу ймовірності безвідмовної роботи Pc(t) системи з навантаженим загальним резервом. Приведіть графік залежності нароботки до відказу від кратності резерву.
- •17 Розробіть на мові асемблер програму для обчислення суми чисел масиву з 10 елементів типу байт у процедурі з передаванням аргументів через регістри.
- •18 Розробіть на мові асемблер фрагмент програми, в якій знаходиться максимальний елемент масиву з 10 чисел типу слово (з використанням команди jcxz).
- •19 Розробіть на мові асемблер фрагмент програми для обчислення номеру мінімального елементу в масиві з 10 чисел типу слово (за допомогою команди loop)
- •20 Розробіть на мові асемблер фрагмент програми, що порівнює значення двох змінних введених з клавіатури й відображає результат у вигляді: рівні або нерівні.
- •21 Розробіть на мові асемблер фрагмент програми, в якій додаються та множаться два байтові числа, визначається парний чи непарний результат суми та дво- чи чотирьохбайтовий результат добутку.
- •26 Приведіть методи підвищення ефективності роботи з жорстким диском по переміщенню голівок
- •31 Проаналізуйте структуру драйверу ms dos. Його частини. Завантаження драйверу та робота з ним.
- •33 Наведіть характеристики режимів відеосистеми. Характеристики, які не змінюються, які змінюються з використанням фізичних методів. Характеристики, які змінюються програмно.
- •34 Проаналізувати методи створення розділів диску. Скільки розділів та логічних дисків можливо встановити на одному фізичному диску?
49 Мережі Протокол bgp
Протокол BGP
Пограничный шлюзовой протокол (Border Gateway Protocol, BGP) в версии 4 является сегодня основным протоколом обмена маршрутной информацией между автономными системами Интернета. Протокол BGP пришел на смену протоколу EGP (EGP в данном случае является названием конкретного протокола маршрутизации. Напомним, что EGP служит также названием класса внешних шлюзовых протоколов, используемых для маршрутизации между автономными системами, что вносит некоторую путаницу), использовавшемуся в тот начальный период, когда Интернет имел единственную магистраль. Эта магистраль являлась центральной автономной системой, к которой присоединялись в соответствии с древовидной топологией все остальные автономные системы. Так как между автономными системами при такой структуре петли исключались, протокол EGP не предпринимал никаких мер для того, чтобы исключить зацикливание маршрутов.
BGPv4 успешно работает при любой топологии связей между автономными системами, что соответствует современному состоянию Интернета.
Поясним основные принципы работы BGP на примере (рис. 19.18).
Рис. 19.18. Поиск маршрута между автономными системами
с помощью протокола BGP
В каждой из трех автономных систем (AS 1021, AS 363 и AS 520) имеется несколько маршрутизаторов, исполняющих роль внешних шлюзов. На каждом из них работает протокол BGP, с помощью которого они общаются между собой.
Маршругизатор взаимодействует с другими маршрутизаторами по протоколу BGP только в том случае, если администратор явно указывает при конфигурировании, что эти маршрутизаторы являются его соседями. Например, маршрутизатор EG1 в рассматриваемом примере будет взаимодействовать по протоколу BGP с маршрутизатором EG2 не потому, что эти маршрутизаторы соединены двухточечным каналом, а потому, что при конфигурировании маршрутизатора EG1 в качестве соседа ему был указан маршругизатор EG2 (с адресом 194.200.30.2).
Аналогично, при конфигурировании маршрутизатора EG2 его соседом был назначен маршрутизатор EG1 (с адресом 194.200.30.1).
Такой способ взаимодействия удобен в ситуации, когда маршрутизаторы, обменивающиеся маршрутной информацией, принадлежат разным поставщикам услуг (ISP). Администратор ISP может решать, с какими автономными системами он будет обмениваться трафиком, а с какими нет, задавая список соседей для своих внешних шлюзов. Протоколы RIP и OSPF, разработанные для применения внутри автономной системы, обмениваются маршрутной информацией со всеми маршрутизаторами, находящимися в пределах их непосредственной досягаемости (по локальной сети или через двухточечный канал). Это означает, что информация обо всех сетях появляется в таблице маршрутизации каждого маршрутизатора, так что каждая сеть оказывается достижимой для каждой. В корпоративной сети это нормальная ситуация, а в ISP-сетях нет, поэтому протокол BGP и исполняет здесь особую роль.
Для установления сеанса с указанными соседями ВСР-маршругизаторы используют протокол TCP (порт 179). При установлении BGP-сеанса могут применяться разнообразные способы аутентификации маршрутизаторов, повышающие безопасность работы автономных систем.
Основным сообщением протокола BGP является сообщение UPDATE (обновить), с помощью которого маршрутизатор сообщает маршрутизатору соседней автономной системы о достижимости сетей, относящихся к его собственной автономной системе. Само название этого сообщения говорит о том, что это триггерное объявление, которое посылается соседу только тогда, когда в автономной системе что-нибудь резко меняется: появляются новые сети или новые пути к сетям, или же напротив, исчезают существовавшие сети или пути.
В одном сообщении UPDATE можно объявить об одном новом маршруте или аннулировать несколько переставших существовать. Под маршрутом в BGP понимается последовательность автономных систем, которую нужно пройти на пути к указанной в адресе сети. Более формально информация о маршруте (BGP Route) к сети (Network/Mask_length) выглядит так:
BGP Route = AS_Path; NextHop; Network/Mask_length;
Здесь AS_Path — набор номеров автономных систем, NextHop — IP-адрес маршрутизатора, через который нужно передавать пакеты в сеть Network/Mask_length. Например, если маршрутизатор EG1 хочет объявить маршрутизатору EG2 о том, что в AS 1021 появилась новая сеть 202.100.5.0/24, то он формирует такое сообщение:
AS 1021; 194.200.30.1; 202.100.5.0/24
и передает его маршрутизатору EG2 автономной системы AS 363 (с которым у него, конечно, должен быть установлен BGP-сеанс).
Маршрутизатор EG2, получив сообщение UPDATE, запоминает в своей таблице маршрутизации информацию о сети 202.100.5.0/24 вместе с адресом следующего маршрутизатора 194.200.30.1 и отметкой о том, что эта информация была получена от протокола BGP. Маршрутизатор EG2 обменивается маршрутной информацией с внутренними шлюзами системы AS 363 по какому-либо протоколу группы IGP, например OSPF. Если у EG2 установлен режим перераспределения маршрутов BGP в маршруты OSPF, то все внутренние шлюзы AS 363 узнают о существовании сети 202.100.5.0/24 с помощью объявления OSPF, являющееся внешним. В качестве адреса следующего маршрутизатора маршрутизатор EG2 будет теперь объявлять адрес собственного внутреннего интерфейса, например, 192.17.100.2.
Однако для распространения сообщения о сети 202.100.5.0/24 в другие автономные системы, например, в AS 520, протокол OSPF использоваться не может. Маршрутизатор EG3, связанный с маршрутизатором EG4 автономной системы 520, должен пользоваться протоколом BGP, генерируя сообщение UPDATE нужного формата. Для решения этой задачи он не может использовать информацию о сети 202.100.5.0/24, полученную от протокола OSPF через один из своих внутренних интерфейсов, так как она имеет другой формат и не содержит, например, сведений о номере автономной системы, в которой находится эта сеть.
Проблема решается за счет того, что маршрутизаторы EG2 и EG3 также устанавливают между собой BGP-сеанс, хотя они и принадлежат одной и той же автономной системе. Такая реализация протокола BGP называется внутренней (Interior BGP, iBGP), в отличие от основной, внешней (Exterior BGP, eBGP). В результате маршрутизатор EG3 получает нужную информацию от маршрутизатора EG2 и передает ее внешнему соседу, маршрутизатору EG4. При формировании нового сообщения UPDATE маршрутизатор EG3 трансформирует сообщение, полученное от маршрутизатора EG2 за счет того, что добавляет в список автономных систем собственную автономную систему AS 363, а полученный адрес следующего маршрутизатора заменяет адресом собственного интерфейса:
AS 363, AS 1021; 132.15.64.3; 202.100.5.0/24.
Номера автономных систем позволяют исключать зацикливание сообщений UPDATE. Например, когда маршрутизатор EG5 передаст сообщение о сети 202.100.5.0/24 маршрутизатору EG6, то последний не будет его использовать, так как оно будет иметь вид:
AS 520, AS 363, AS 1021; 201.14.110.3; 202.100.5.0/24.
Так как в списке автономных систем уже есть номер собственной автономной системы, очевидно, что сообщение зациклилось.
Протокол BGP используется сегодня не только для обмена маршрутной информацией между AS.