Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TYeMA_10__38_OSNOV_AERO_i_KOSMIChYeSKOJ_FOTOS_Y....doc
Скачиваний:
4
Добавлен:
27.10.2018
Размер:
760.83 Кб
Скачать

Тема 9 (38)

ОСНОВЫ АЭРО и КОСМИЧЕСКОЙ ФОТОСЪЕМКИ

  1. Общие понятия об аэрофотосъемке

Одним из важнейших применений фотографии является воздуш­ное и космическое фотографирова­ние, т. е. получение снимков земной поверхности с лета­тельных аппаратов – самолетов, вер­толе­тов, искусственных спут­ников Земли и др.

Аэрофотосъемкой называют совокупность работ по получе­нию аэронегативов и аэ­роснимков или цифровых снимков местности с целью последующего их ис­пользования для создания планов и карт местности. Термин «Аэ­рофо­то­съемка» объединяет ряд взаимосвязанных процессов, в частности:

- летно-съемочные работы, включающие разработку техни­че­ских условий аэро­фо­тосъемки, составление проекта и его исполнение;

- полевые фотолабораторные работы, в случае традиционной аэрофотосъёмки, включающие фото­графи­че­скую обра­ботку экспонированных аэрофильмов, из­го­товление по ним отпечатков и иной пер­вичной продукции;

- полевые фотограмметрические работы, включающие регистра­цию мате­риа­лов аэрофотосъемки и оценку качества ис­полнен­ной фотосъемки.

Результатом традиционных работ являются аэронегативы, аэро­снимки, а также зафиксиро­ван­ные в полете показания специальных прибо­ров.

Аэронегативы (аэроснимки) – фотографические изображе­ния мест­ности, по­кры­вающие без разрывов заданный участок земной по­верх­ности – используются для после­дую­щего преобразования и соз­дания по ним карт и планов. Для обеспечения последующих работ смежные аэро­негативы (аэроснимки) должны иметь перекрытия рас­чет­ной величины. Мет­рические и фотометрические характеристики аэроне­гативов в значи­тельной степени за­висят от выполнения техни­ческих ус­ловий аэрофото­съемки и выбора параметров применяе­мых для аэрофо­тосъемки фотогра­фических материалов и оптических сис­тем. Точность и ка­чество аэроне­гативов, в свою очередь, определяет качество созда­ваемых по ним карт и пла­нов, сроки фотограмметриче­ской обработки, организацию работ и т.п. Для получения пол­ноцен­ных аэронегативов и их эффективного использо­вания необходимо со­гласование летно-съе­мочных работ, и в первую оче­редь их парамет­ров, с организацией всего топографо-геоде­зи­ческого про­изводства.

В отличие от традиционной аэрофотосъёмки цифровая аэрофотосъёмка выполняется по двум технологиям, которые зависят от типа цифровых камер:

  • летно-съемочные работы, в которых используют камеры с ПЗС линейками обязательно сочетаются две системы GPS + INS, то есть Глобальная система позиционирования и Инерциальная система, для определения положения изображения ПЗС-линейки в пространстве в каждый момент времени. Эта съёмочная система часто используется также при космических съёмках. Бортовой компьютер и программное обеспечение позволяют интегрировать обработку данных GPS -приёмника и данных INS – инерциальной системы и объединить трансформированное по ним изображение в полные снимки.

В самолётном варианте изменения в высоте платформы, на которой установлена камера, трудно предсказуемы. Поэтому разработан и реализован второй технологический подход – матричный сенсор.

  • летно-съемочные работы, выполняемые на основе матричного сенсора (ПЗС – матрица), больше напоминают традиционный аналоговый метод аэрофотосъёмки, когда все элементы матрицы одновременно экспонируются. В этом методе внутри пиксельная геометрия известна и строго определена, по сравнению с линейной технологией, в которой размеры пикселя меняются в зависимости от продольной скорости носителя. В матричной технологии в настоящее время проблема в том, что большие матричные решётки сложны в изготовлении. Поэтому комбинируют: делают большие по площади решётки из нескольких маленьких по площади. Например, из четырёх. Четырех линзовый объектив формирует четыре отдельных изображения, которые трансформируют в центральную проекцию и автоматически стыкуют. Такие снимки обрабатываются по существующим программам аналитической обработки.

Результатом цифровой аэрофотосъёмки являются цифровые аэрофото­снимки, а также зафиксиро­ван­ные в полете элементы внешнего ориентирования (линейные - Xs, Ys, Zs – координаты центра фотографирования; угловые - , ,  - ориентирование камеры относительно осей координат).

В соответствии с законами центрального проектирования, по кото­рым строится изо­бра­жение местности, аэронегатив (аэроснимок) содер­жит ряд искажений, величины которых определяются углом на­клона оптической оси аэрофотоаппарата и колебанием рельефа мест­ности. Устранение этих искажений осуществляется в процессе их фо­тограм­метрической об­ра­ботки, и в частности – фотографического или цифро­вого преобразования, называемого трансформированием. В связи с этим использование аэроснимков без их предвари­тельного трансформи­рования для картогра­фического (топографического) обес­печения вы­пол­няемых работ, в том числе в качестве основы ГИС, ог­раничивается влиянием указанных иска­жений.

Показания специальных приборов и оборудования, зафик­сиро­ванные в про­цессе аэрофотосъемки, обеспечивают стабилизацию съемочной ка­меры в полете или последующее опре­деление по ним простран­ст­вен­ного положения аэроснимков в абсолютной или относи­тель­ной сис­теме коор­динат с целью последующего их использования при вы­полне­нии фо­то­грамметрических работ и преобразовании аэро­снимков в планы и карты. К числу таких при­боров относят гироскопы, системы глобального пози­ционирования, оборудование для опре­деле­ния вы­соты полета, пре­выше­ний между центрами фотографирования, а также аэро­нави­гацион­ные сис­темы и др. Наличие указанных данных во многом определяет тех­нологию ка­меральной обработки материалов аэрофото­съемки, сущест­венно влияет на оперативность, точность фо­тограм­метрических по­строений и объ­емы полевых работ по их обес­печению.

Аэрофотосъемочные работы выполняются спе­циали­зированными подразделениями топографо-геодези­ческой или землеустроительной службами на специально оборудованных лет­ных средствах.